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Abstract In text generation, various kinds of choices need to be
decided. In conventional frameworks, which we call one-path generation
Jframeworks, choices are made in an order carefully designed in advance. In
general, however, since choices depend on one another, it is difficult to make
optimal decisions in such frameworks. Our approach to this issue is to
introduce the revision process into the overall generation process. In our
framework, revision of output texts is realized as dependency-directed
backtracking (DDB). As well as Justification-based Truth Maintenance
System (JTMS). we maintain dependencies among choices in a dependency
network.

In this paper,we propose an efficient implementation of DDB for text
generation using functional unification grammar (FUG). We use bindings of
logical variables in Prolog and destructive argument substitutions to
decrease the overhead of handling a dependency network. This paper
describes the algorithm in detail and shows the results of preliminary
experiments to demonstrate the performance of our implementation.

Keywords: Text Generation, Surface Generation, Revision, Dependency-Directed
Backtracking, Functional Unification Grammar Prolog

§1 Introduction

In text generation, various kinds of choices need to be decided. In
conventional frameworks, which we call one-path generation frameworks, those
decistons are made in an order carefully designed in advance. In general,
however, since choices depend on one another, it is difficult to make optimal
decisions in such frameworks.
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This issue has been discussed and several solutions have been pro-
posed."™'? Our approach to this issue is to introduce the revision process into
the overall generation process.' Our genration model is illustrated in Fig. 1. In
this model, the generation process consists of the initial generation process and
the revision process. The revision process is realized by repeated revision cycles,
each of which consists of evaluation of the output text, revision planning, and
regeneration.
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Fig. 1 Generation model with revision component.

At the present, we focus on surface generation®; therefore, we assume that
inputs to the system be rhetorically organized semantic representations.'” In the
initial generation process and the regeneration process, the surface generator
generates a text applying lexico-grammatical constraints and preference rules.
The lexico-grammatical constraints provide a set of choice points and the
alternatives for each of them. The preference rules are heuristics which assign
preferences to those alternatives. The surface generator makes decisions accord-
ing to the preference rules. In our model, however, decisions are tentative and
may be changed in the revision process. Thus outputs from the surface generator
are called drafts in this paper. A draft contains not only semantic information
but also syntactic and lexical information. What should be noted here is that all
the necessary decisions have been made at the end of the initial generation
process. In the revision process, if the evaluator detects a problem in the current
draft, the revision planner refers to revision rules to solve it. Revision rules are
assumed to be heuristics that would suggest which choice should be changed to
solve the problem. We call such a choice a culprit choice. In the regeneration
process, the surface generator changes a culprit choice and generates another

* In general, text generation can be decomposed into two phases, deep generation and surface
generation. Deep generation decides the contents and the organization of a text, while surface
generation makes choices on syntactic structure and lexical items.

19)
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draft.

A major difficulty in handling the interdependencies among decisions is
that at some choice points the system could not make optimal decisions unless
the system had the infomation about their effects on the following decisions and
the final text. In one-path generation, therefore, the system would have to
anticipate the future decisions to make the current decision; while, in our model,
the evaluator can get access to all the information necessary for evaluating the
decisions. This is because in the evaluation process all the necessary decisions
have already been made.

Assuming that evaluation and revision planning be done successfully, the
system would revise the current draft by changing a culprit choice and regenerat-
ing another draft. In this sense, revision can be seen as backtracking. Our
approach is, however, different from naive chronological backtracking. In
chronological backtracking the system would go back to the latest choice point,
while our backtracking is dependency-directed in the following senses.

The system directly goes back to a culprit choice point by referring to
revision rules,

The system reuses the results of the previous computation if possible
when regenerating another draft.

To realize dependency-directed backtracking (DDB), the system needs to
maintain the historty of decisions and their effects on the current draft. In the
previous paper, we proposed a method to apply the framework of Justification-
based Truth Maintenance System (JTMS)® to DDB in text generation. In this
method. the system maintains the history of choices and the dependencies among
them in a dependency network. It is, however, well-known that network handl-
ing in JTMS requires some computational overhead. We need an efficient
implementation of network handling to make our framework feasible.

In this paper, we propose an efficient implementation of DDB for text
generation in Prolog. In our implementation, arcs between dependent nodes in
a dependency network are represented by bindings of logical variables, which
facilitates traversing the network. In addition, we use destructive argument
substitution to make efficient both updating networks and changing drafts.

So far we have fully implemented the surface generator, while implementa-
tion of the evaluator and the revision planner have not been completed yet.
Concerning criteria for evaluation of drafts, we have so far considered structural
complexity and structural ambiguity of each sentence.’® They are mainly matters
of decisions on stylistic choices, which are free of constraints specified in in-
puts.?® Obviously we still need to discuss what kind of criteria we should
consider and also how to develop effective revision rules (see Ref. 22)). But the
discussion on these issues would not be so straightforward since it is very likely
that they keenly depend on actual descriptions of lexico-grammatical knowl-
edge. In this context we are now developing an extensive grammar of Japanese,




172 K. Inui, T. Tokunaga, and H. Tanaka

which is expected to provide us with a lot of useful suggestions on these issues.

In the following sections, we first describe an overview of text generation
in Section 2. We adopt the formalism of functional unification grammar (FUG)
for represnting linguistic knowledge. In Section 3, we propose an efficient
implementation of the FUG unification with DDB. In Section 4, we show the
results of preliminary experiments to demonstrate the performance of our imple-
mentation. Finally, we conclude the paper with some future research directions
in Section 5.

§2 Controlling FUG Unification by DDB

We are now developing a Japanese grammar based on the framework of
systemic-functional grammar (SFG).!” SFG has desirable features for text
generation and has been used by several text generation systems.>*'®'821) This is
mainly because of the following respects.'¥

SFG organizes the linguistic information based on the “paradigmatic”
perspective, which makes the choices in generation explicit.

Text generation is often a goal-oriented task motivated by some goals of
the speaker/writer; therefore, considering functionality of language is
indispensable in text generation. SFG describes the linguistic constraints
in terms of functionality.

The first aspect is desirable not only for text generation but also for revision.
Since SFG describes alternatives and their effects on the lexico-grammatical
structure explicitly, it should not be so difficult to find a correspondence between
a problem in a draft and candidates of its culprit choices. Therefore, designing
the revision rules would be easier.

As a computational tool to implement SFG, we use functional
unification grammar (FUG),"» which has good properties for implementation of
DDB in the following respects.

SFG can be straightforwardly represented in the FUG notation.!* For
example, each choice in SFG corresponds to a disjunction in FUG, and
conflation in SFG* corresponds to unification in FUG.

Unification is a basic operation of FUG, and thus description of FUG do
not constrain the order of decisions. This property is desirable for our
model since the decision order may be changed during the revision
process.**

In this section, we first briefly describe taxt generation using FUG, and then

% Conflation is an important device to realize multi-functionality of SFG. In SFG, a constituent
cap have more than one functions. For example, “John™ in the sentence “John bought a car.”
realizes not only the ideational function Agent but the textual function Theme. In the FUG
framework, mulii-functionality can be realized by conflanng (i.e. unifying) constituents: a
constituent labeled Agent and another one labeled Theme in this example.

*% Note that DDB imposes changes of the decision order in general.
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explain the control of unification by DDB.

2.1 Text Generation Using FUG
In the FUG formalism, a grammar is described in the form of functional
description (FD), which we call grammar functional description (GFD) in this
paper. Inputs to the system are also represented as FDs. To generate a rext, the
system unifies an input FD with a GFD. As unification proceeds, features in the
GFD are added to the input FD. We refer to such a FD, which is to be enriched,
by a working functional description (WFD). Figure 2 shows an example of GFD
and WFDs. In this paper, following the conventional notation, a disjunction is
denoted by a pair of curly brackets {}. WFD, is an input FD. which is to be a
sentence “Jone loves Mary.”
In our system, unification of a WFD and a GFD proceeds in the
top-down and depth-first manner. In most cases of text generation, the top-down

[ rank: s

m senser : [rank: np]

process : [rank: vp)

pattern: [senser, process, range]
- rank: np

GFD = n: [rank: noun] ]

L pattern: [n]

[ rank: vp
3 v: [rank: verb] ]
L pattern: [v---]
[ rank: s .
_ senser: [n: [lex: John
WED, = range : [n: [lex: Mary]l]
| process: [v: [lex: lovel]
" rank: s
senser : [ rank : np ]
"L n: [lex: John]
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rank : vp
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rank : verb
pattern: [v]

L pattern: [senser, process, range] -

Fig.2 An example of GFD and WFD.
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and depth-first search strategy will work efficiently. Since a text generation
system does not have to give possible outputs all at once and in addition our
framework allows the system to revise drafts, depth-first search is suitable for our
purpose.

In the example in Fig. 2, the GFD has three alternatives at the top level.
Here only the first alternative can unify with WFD,, which produces WFD,.
Then the system tries to recursively unify each constituent that is listed in the
value of feature pattern. In this case, senser is unified first with the GFD, the
second alternative being chosen. After unifying senser with the GFD, the system
moves to the next constituent process. The final result is WFD, in Fig. 2.* If
unification fails during the process, the system goes back to the latest disjunction
to try another alternative. Like this, the system tries alternatives one by one at
each choice point, which means that the order of the alternatives represents a
static preference order of them. Therefore, a GFD describes both lexico-
grammatical constraints and preferences among the alternatives (i.e. the prefer-
ence rules in Fig. 1).

2.2 DDB in FUG Unification

JTMS maintains the dependencies among assumptions using a depen-
dency network in order to realize DDB. Similarly, we need to maintain depen-
dencies among choices and features to realize DDB for FUG unification.

The system incrementally constructs a dependency network during the
initial generation process and updates it during the regeneration process. For
example, when the unification shown in Fig. 3 is performed, the system con-
structs the network shown in fig. 4. First, the system tries to unify WFD, with
alternative [1]. Since this unification fails, the system tries the next alternative [2].

"VFDosz;[c W] | (a.x
B -
, B b;[c:w] raiVc'w |
WFD, = d:[e;y] :{ey}
[ h:u J GFD = EI | h:iu
gr)
[ [} [
WFD, = : (& [ i |
L h:

Fig.3 An example of unification.

* To generate a sentence from a final WFD, a further process, called linearization, is necessary. In
linearization, the system traverses the WFD to retrieve all the lexical specifications and the
pattern features. Those pieces of information is sufficient to generate the output sentence.
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Fig.4 An example of dependency network.

The first three features (a, b, and d) in [2] are unifiable. WFD, shows a snapshot
where features a, b and d in alternative [2] and h in [3] have been unified.

A dependency network contains two types of nodes: feature nodes and
choice nodes, which are linked with one another. A feature node corresponds to
a feature in a WFD and a choice node represents which alternative was chosen
at a choice point. In Fig. 4, feature nodes are denoted by f(_,_) and choice nodes
are denoted by c(_,_).

Each time the system succeeds in unifying a disjunction in a GFD with
a WFD, the system creates a choice node to store the information about the
choice. A choice node consists of the path from the root of the WFD to the
constituent on which the choice is made, and the identifier of the chosen
alternative. At the same time, the system creates feature nodes each of which
corresponds to a feature newly added to the WFD by the choice. A feature node
consists of the path from the root of a WFD to itself, and its value. Furthermore,
the system creates arcs between the choice node and the feature nodes. Arcs
represent justifications in terms of JTMS. Arcs are created in the following
procedure.

(1) Crate an arc from a feature to a choice, if the feature was already present
in both the GFD and the WFD before unification.
If this feature is changed in the revision process, the validity of the choice
needs to be checked again. Therefore this feature can be seen as a
justification of the choice. In Fig. 3, WFD, and alternative [2] had already
shared features a and ¢ before unification, and therefore arcs are created
between feature a and choice [2], and between feature ¢ and choice [2].
They are denoted by are (1) and (2) in Fig. 4.

(2) Create an arc from a choice to each feature that is newly added to the
WFD by choosing the alternative.
If the choice is changed, the validity of these features should be checked
again. Therefore this choice can be seen as a justification of these features.
In Fig. 3, feature e in WFD, is newly introduced by unifying WFD, and
alternative [2]. So an arc is created between feature e and choice [2], which
is denoted by arc (3). Arc (5) is also created analogously.
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(3) Create an arc from a choice to each of its daughter choice(s).
For instance, alternative [2] includes a disjunction that has two alterna-
tives 3] and [4]. If the system chooses (3] after [2], the validity of choice
is supported by choice (2. Thus it is necessary to create an arc between
these choices, which is denoted by arc (4).

In each revision cycle, the system first identifies a culprit choice by
referring to the revision rules. Then, the system removes all the features justified,
directly or indirectly, by that choice from the current WFD. For example, if
choice [2] is changed, the system will remove features d :[e:y] and h:u from
WFD,. The important point to note is that the system preserves all the features
and the choices that are independent of the culprit choice.* In the regeneration
process, the system tries another alternative at the culprit choice point, and
resumes unification, skipping the choice points where the decisions have already
been made and still stay valid. Thus, our method prevents the system from
unnecessary recomputation in the regeneration process. In this respect, our
method is significantly different from chronological backtracking.

§3 Implementation

We use Prolog to implement the system, since Prolog’s depth-first search
can be straightforwardly applied to our depth-first generation. In addition,
logical variables can be used as a versatile device in constructing dependency
networks.

Our unification algorithm is based on Eisele and Dérre’s.” In their
algorithm, an FD is represented as a Prolog list of feature-value pairs whose tail
is an unbound variable. For example, WFDy in Fig. 3 is represented as

la: v, b: [e:w/ ]I

Here a colon (:) is defined as a Prolog operator which conjoins a feature and its
value.

Given FDs in this data structure, a Prolog predicate to unify two FDs can
be defined as follows, which will be referred to by the basic unification algor-
ithm™*:

unify(FD, FD):- L.

unify([Feature : Value|FDI], FD):-
pathval(FD, Feature, Value, FD2),
unify(FD 1, FD2).

pathval([Feature : Valuel |FD], Feature, Value2, FD):-
!, unify(Valuel, Value2).

pathval([Featurel |FD1], Feature, Value, [Feature! |FD2]):-
pathval(FD|, Feature, Value, FD2).

* This point is not shown clearly in the example.
%% This is based on the program presented by Gazder and Mellish.'”
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Predicate pathval finds the value Value of a featue Feature in the FD given in the
first argument, returning the remainder of the FD without the feature-value pair
Feature:Value in the fourth argument.

Although our unification is basically the same as the above, the data
structure is slightly different. Since we need a dependency network to control
backtracking, the data structure of FDs includes pointers to the network. In the
following subsections, we explain the data structure of FDs, followed by the
algorithms for network construction, backtracking, and regeneration.

3.1 Data Structure

Figure 5 illustrates the data structure of WFD, shown in Fig. 3. Here a
pair of square brackets denotes a Prolog cons cell. A vertical bar separates the
head and the tail of a cons cell. WFDy is enclosed by the dashed box, while the
feature nodes of the dependency network are shown outside the box.

£4(0,9) \
{) /———-ﬁ(_,m
azatom(v,d) |¢] !

|
|
}
|
t |
! b:fd?_,})l_] |
}
|
]

Fig.5 Data structure of WFDy in Fig. 3.

An FD is represented as a structure:
fd(cycle_id, list_of _features).

Cycle_id is the identifier of a revision cycle, which is updated in every revision
cycle. This is used to avoid unnecessary recomputation in backtracking (see
Section 3.3). As in the basic unification algorithm, the tail of list_of _featurers
is always an unbound variable, which is denoted by an underscore (*_") in Fig.
5. A feature value is either an atomic value or an FD. An atomic value is
represented as a structure:

atom(value, f(state, descendants)).

Value denotes an atomic feature value and structue f denotes a feature node of
a dependency network. Note that each atomic value has a feature node as its
own argument. Thus, in our data structure, the FDs and the dependency
network are integrated into a single structure. The first argument of a feature
node, state, represents the feature’s state. It is an unbound variable as long as the
feature is valid. When the state propagation invalidates the feature, its state is
bound to a special constant “out”. The second argument descendants is a list of
the nodes justified by that feature.

Choice nodes are indexed by another data structure which we call a




178 K. Inui, T. Tokunaga, and H. Tanaka

choice history. The data structure of a choice history is defined as follows.

choice_history:: = history(choices, constituent_history).
choices::= [ choice_node | choices]|[].
constituent_history::= [label: choice_history | constituent_history]|[].

A choice node is represented as a structure c:
choice_node::= c(choice_id, [state| antecedents], descendants).

For example, in the case of the generation process shown in Fig. 2, the
system constructs the following choice history.

history([c(,_,_)],
[senser: history([c(._)]. ().
process: history([c(@,_,_)]. [J).
range: history([c(@,_,_)], [1]).

With the choice history, the system can make efficient access to a choice node by
specifying the path of the constituent with which the choice is associated, and
the identifier of the choice (i.e. choice_id). Antecedents is a list of states of
choice nodes (see Section 3.3).

3.2 Network Construction

As described in Section 2.2, the dependency network is updated each time
an alternative is chosen. Figure 6 shows a Prolog data structure corresponding
to WFD; in Fig. 3 and the dependency network in Fig. 4. WFD, is enclosed by
the dashed box, while the dependency network is shown outside the box. Each
atomic value in the WFD and its own feature node in the network are connected
by a variable binding, and the dependency arcs in the network are also represent-
ed by variable bindings. Each of the variable bindings (1) through (5) in Fig. 6
corresponds to the dependency arc that has the same number in Fig. 4.

)

/f—-»u_.m c( 3], 1|81, 03—=lp]
I
!
[e:atom(y, &) |_1. V_\_J

|
: £0_, 1)
h:atom{u, ) |_] !

_— e e - m e = — . — = -

Fig. 6 Data structure of WFD, in Fig. 3.
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An outline of the unification algorithm is shown in Fig. 7 in the form of
a Prolog Program. Except for network handling, a significant difference of our
algorithm from the basic unification algorithm is that our algorithm does not
treat two FDs symmetrically. Features in a GFD may be added to a WFD, but
not vice versa. GFDs are always kept intact during unification.

Predicate unify/3 assumes the first argument be a GFD, the second be a
WFD, and the third be a dependency network to construct. unify/3 is defined in

I: unify([].__) :-.
2: unify([Feature: Value|GFD], WFD, CNode) :-!,
3 feature Val(WFD, Feature, Value, CNode),
4: unify(GFD, WFD, CNode).
5: unify([alt(Alternatives)| GFD), WFD , CNode) :-!,
6: unifyAit(Alternatives, WFD, CNode),
7. unify(GFD, WFD, CNode). :
8: unify([Feature!/Feature2 | GFD], WFD, CNode) :- '
9: conflate(Feature |, Feature2, WFD, CNode), l
10: unify(GFD, WFD, CNode). '
Il: featureVal(WFD, Feature, Value, ¢(_, _, Descendants)) :-
12: var(WFD),
13: atom(Value), ! ,
14: WFD ={Feature: atom(Value, FNode)| _], |
15: createArc(Descendants, FNode). :
16: featureVal(WFD, Feature, Value, CNode) :- )
17: var(WFD), !,
18: WFD ={Feature: fd(_, FD)| ] .
19: unify(Value, FD, CNode). |
20: featureVal([Feature: atom(Value!, FNode)|_], Feature, Value, CNode) :-!, '
21: Value=Valuel,
22: creareArcFromFNode(FNode, CNode). !
23: featureVal([Feature: fd(_, FD)|_], Feature, Value, CNode) :-!,
24: unify(Value, FD, CNode).
25: featureVal([_|WFD], Feature, Value, CNode) :-
26: featureVal(WFD, Feature, Value, CNode).
27: unifyAlt([Id: GFD | Alternatives], WFD, c{_. Antecedents, Descendants)):-
28: Descendants = [ State|_],
29: CNodel =c(ld, [State|Antecedents], []).
30: createArc(Descendants, CNodel),
3 unify(GFD, WFD, CNodel),
32:  unifyAlt([_| Alternatives], WFD, CNode):-
33: unifyAlt(Alternatives, WFD, CNode).
34: conflate(Featurel, Feature2, WFD, c(_, _, Descendants)):-
35: featureVal2(WFD, Featurel, Valuel),
36: featureVal2(WFD, Feature2, Value2),
37 createl eavesList(Valuel, LO-LI),
38: createLeavesList(Value2, LI-[]),
39: createArc(Descendants, conflation(L0)),
40: unify(Valuel, Value2).
41: createArc(Descendants, Node):-
42: Descendants = [ State | Descendants| ],
43: setarg(2, Descendants, [Node | Descendants!]).

Fig. 7 Outline of unification algorithm.
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terms of four clauses. The first clause is the termination clause for the case there
1s no more GFD fragment to unify. The second clause handles unification of a
feature-value pair. This is actually performed by the predicate featureVal/4. The
third clause handles a disjunction in a GFD. A disjunction is represented as the
following data structure:

alt([idi: GFD,, id»: GFDa,...]).

The order of alternatives within a disjunction represents their perference.
Predicate unify-ait/3 tries each alternative one by one. The last clause of unify/3
handles conflation of features.

Given a feature and its value in the GFD, predicate featureVal/4 searches
the WFD for the feature and unifies these two values. Unike the basic
unification algorithm, featureVal/4 keeps the GFD intact. featureVal/4 receives a
WFD, a feature from a GFD and its value as the inputs in the first three
arguments, and returns the updated choice node in its last argument.

featureVal/4 is defined by five clauses. The first two add into the WFD, the
features that are contained in the GFD but not yet in the WFD. If the feature
value is atomic, a dependency arc is created since this feature is added to the
WFD due to the current choice. This is performed by the predicate createArc/2
in line 15, where the Prolog built-in predicate setarg* is employed to destructive-
ly modify the descendants list (see lines 41 to 43). Arcs (3) and (5) in Fig. 6 are
created by this operation. If the WFD and the GFD share a unifiable feature,
either the third or the fourth clause is used. If the feature value is atomic, this
feature is considered as a justification of the current choice; therefore, a depen-
dency arc is created between the feature and the current choice. This is realized
in line 22. Arcs (1) and (2) in Fig. 6 illustrate this case.

unify-alt/3 deals with disjunctions. When the system finds an alternative
that is unifiable with the WFD, i.e. in the case of the first clause, the alternative
comes to be justified by its mother choice. The arc to represent this justification
is created in line 30. Arc (4) in Fig. 6 is an example of such an arc. Lines 28 and
29, which create a list of the backward pointers to the antecedent choices, says
that the antecedents list of a choice consists of both the state and the anteced-
ents of its mother choice.

Predicate conflate/4 deals with conflation. First, the system extracts the
values of the features to conflate in lines 35 and 36. Predicate featureVal2/3 finds
the value of the given feature in the WFD. Then createLeavesList in lines 37 and
38 traverses the FD given in the first argument (i.e. the FD to conflate) to collect
cons cells whose tail is an unbound variable. This information would be used
to cancel the conflation in the revision process. Then the system creates a
conflation node and creates an arc between the current choice node and the
conflation node (line 39). The conflation node has the pointer to the list created

* setarg is available in SICStus Prolog.?
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Fig.8 Data structure of WFD; in Fig. 3.

by createleavesList. Finally, the system performs the basic symmetric unfication
unify/2 in line 40.

Suppose, for example, the system choose alternative [6] in Fig. 3. b/d says
that b and d are to be unified constituents. Thus the system conflates b and d. In
this case, the leaf cons cells under b and d are [c: atom(w, f(_, ®))|_] and [e: atom(y,
f(_, ®))|_] respectively. Then the system creates a conflation node conflation(®)
with the pointers to these two nodes (arcs (6) and (7)) as illustrated in Fig. 8.
Also, the choice node corresponding to choice [6] points to the conflation node
(arc (8)).

What is important to note about this algorithm is as follows. When
choosing an alternative at a choice point, the system refers to the features in the
WFD that support the choice (e. g. [a: atom(v, ®)|®] in the case of choice (2] in
Fig. 6). This access would be still necessary even though the system did not
construct the network. In our algorithm, since the system creates dependency
arcs (e.g. arc (1)) simultaneously with the access to these features, the overhead
of network construction can be reduced. Similarly, the system can efficiently
create new feature nodes (e.g. [e: atom(y, ®)|_] in Fig. 6) and their dependency
arcs (e.g. arc (3)) simultaneously with unifying these features.

3.3 Backtracking

In each revision cycle, the revision planner suggests a culprit choice that
should be changed in order to solve a problem detected by the evaluator. After
that, in backtracking, the system removes all the features dependent on the
culprit choice from the WFD. In our method, since dependencies are represented
as variable bindings, the system has only to traverse these pointers to find the
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features to remove. This proess, therefore, should be efficient. In backtracking,
the system performs the following procedures.

(1) Search the choice history for the choice node corresponding to the culprit
choice.

(2) Bind the state of the culprit choice to the reserved value “changed”.

(3) [state propagation]
Traverse the dependency network through dependency arcs starting from
the culprit choice node, and perform the following procedures on each
node.

(a) If the node is a feature node, bind its state to the reserved value
“out”.

(b) If the node is a choice node, bind its state to “out” and also bind
each variable in its antecedents list to the reserved value “‘un-
known™.

(c) If the node is a conflation node, substitute the tail of each cons
cell pointed by the conflation node with an unbound variable.
This substitution is performed destructively and cancels the
conflation. This is realized by setarg.

(4) [removal of invalid features]
Remove all the features that are marked “ouwt” from the WFD by
destructive substitution.

Suppose, for example, choice (3] in Fig. 8 be identified as a culprit choice.
The state of the node ¢(,...) is bound to “changed” and traverse starts from this
node. The state of its antecedent, c([2,...) in this case, is changed to “unknown”,
and the state of its descendant, ¢([&,...), is changed to “out”. State “out” means
that the node is invalid. On the other hand, a node, say N, is “unknown’ when
all the nodes supporting N are valid but some of N’s descendant choices are
invalid (only choice nodes can be marked “unknown”). Let us see this difference
using the current example. Figure 9 shows the snapshot after step (3) in the
above procedure. Choice [2] is now unknown because its descendant choices
and (6] are invalid. [2] will become valid again if the system finds, in regenera-
tion, another unifiable alternative instead of [3] at that choice point. Since such
cases occur frequently, it would be better not to invalidate choices such as [2] for
efficiency. Therefore, state “out” propagates via descendant links, while “un-
known™ does not.

Cancellation of conflation (step(3)(c)) is illustrated by the snapshots
shown in Figs. 8 and 9. Here the system substitutes the tails of the nodes pointed
by the conflation node ([c: atom(w, f(_,®))|®] and [e: atom(y, f(_,))| ®]) with
unbound variables. As a result, the WFD in Fig. 8 comes to be that in Fig. 9.
In Fig. 9., features b and d are not conflated any longer.

Finally, the system removes feature [h: atom(u, f(out,_))| _] by substituting
the tail of node [d: fd(0, ®) ®] with an unbound variable. In this process, the
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Fig.9 The snapshot after step 3 in backtracking.

system searches the WFD for all the invalid features. Since a WFD is a DAG in
general, a naive algorithm would cause unnecessary duplication of traverse. The
system avoids unnecessary traverse using cycle_id (Section 3.1). If the system
comes across an FD whose cycle_id is not equal to the current cycle_id, the
system updates it and traverses the FD; otherwise, the system skips the FD.

3.4 Regeneration

After the system goes back to a culprit choice point and cancels the
decisions dependent on that choice as described in the previous section, the
system resumes unification from the culprit choice point to generate another
draft. Unlike the initial generation process, the system now refers to the choice
history and avoids unnecessary recomputation. At each choice point, the system
performs the following operations.

(1) If the choice point has a choice whose state stays valid, accept the choice
without recomputation.

(2) If the choice point has a choice whose state is “unknown”, try the choice
again.

(3) If the choice point has a choice whose state is “out” or has no associated
choice node, try the alternatives one by one from the first one.

For example, when the system starts regeneration after removing the
invalid features from the WFD shown in Fig. 9;

the system does not try alternative [1] again because the choice point
including alternative (1] has an unknown choice node (alternative [2]),
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and thus the system knows the unification with (1] fails;

the system tries alternative again because its state is “unknown’;

the system skips the unification of the first three features in [2] because the
system knows these features are already shared with the current WEFD.

3.5 Extensions: Handling Special Features and Values

In this section, we describe the extensions of the algorithm in Fig. 7 to
handle special reserved features and values: pattern, given, none, etc.

A pattern feature specifies a constraint on the linear order of constituents.
For example, a constraint that goal has to follow process would be described by
the pattern:

[.... process...., goal,...],

3 "

where represents an arbitrary sequence of constituents. Similarly a con-
straint that destination has to follow process would be described by

[..., process,..., destination,...].

If these two constraints are imposed simultaneously, the resultant pattern would
be either

(... process,..., goal,..., destination,...]
or
(..., process,..., destination,..., goal,...].

As shown in this example, unification of pattern features is not deterministic in
general. Particularly it is the case with free word-order languages like Japanese.
Given this fact, it would be reasonable not to immediately compute the resultant
pattern, but just to check the compatibility of the pattern fragments. For
example, unifying

WFD=| pattern: [[..., goal,...]]
and

GFD=]| pattern: [..., destination,...]

would produce

WFD=| pattern: [

[..., goal,...] ]

[..., destination,...]
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This is exactly the same algorithm as that of PFUF, which was developed by
Fasciano et al.®

Since we just accumulate the compatible pattern fragments, we could deal
with each fragment as if it were an atomic feature, and assign it a feature node.
In addition, since we could regard a set of pattern fragments as a FD, we can
implement unification of pattern features in a way similar to conflation of FDs.

In Elhadad's FUF system,” which is a generation system employing the
FUG formalism, special atomic feature values such as given, none and any are
implemented. Elhadad has demonstrated that those feature values are useful to
describe various kinds of linguistic constraints in the FUG formalism. In our
system, two of them, given and none, have been implemented.

A feature-value pair feature:given means that the value of feature must
have been specified in the WFD at the time of unification. If our system finds the
feature whose value is specified in the WFD, then it creates a dependency arc
from that feature to the current choice. According to Elhadad, given is typically
used to describe a constraint that a feature has to be specified in the input. As
far as it is used in that way, there would be no point to create an dependency
arc from the input feature and the choice because the input feature will never
change all through the revision process.

A feature-value pair feature:none means that feature cannot have any
value. Similarly to the FUF system, our system treats this reserved value as if it
were a normal atomic value. That is, if the current alternative includes a pair
Sfeature:none, our system adds it to the WFD. Once the WFD has a pair feature:
none, no longer can it unify with an alternative that has feature whose value is
not none. When a pair feature:none is added to the WFD, the system creates a
dependency arc from the current choice to that feature.

§4 Experiments
In this section we show the results of preliminary experiments to demon-
strate the performance of our implementation.

4.1 Experiment (1)

We first examined some simplest cases with WFDs and GFDs shown in
Fig. 10 to roughly estimate the cost of network handling. WFD, and GFD, are
identical. WFD, (GFD,) has 100 atomic features; five features a.(i =1,..., 5), and
four features b;(j =1,..., 4) for each a.. and finally five atomic features ca(k =1,...,
5) for each pair of a; and b;, WFD; has no feature. GFD, imposes two conflation
constraints.

The counterpart of our implementation was given by removing all the
operations for network handling from the program outlined in Fig. 7. We call
this the chronological backtracking (CB) algorithm to distinguish it from our
DDB algorithm. Unlike DDB, the CB algorithm directly employs Prolog's
chronological backtracking mechanism.
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Fig. 10 WFDs and GFDs used in the experiment.

We measured the CPU time of the following cases.

(a) unification of WFD, and GFD,
(b) unification of WFD; and GFD,
(¢) unification of WFD; and GFD;

In case (a) no atomic feature is added to the WFD, while in (b) all the atomic
features in the GFD are added to the WFD. In (c), the system conflates each pair
of b,’s under a, and az, and similarly those under a; and as.

The results are summarized in Table 1. Let us first see the column of
unification. The rows of CB and DDB denotes the CPU time for the unfication
process in each of cases (a) to (c). The bottom row denotes the ratio of the
overhead of network construction to the cost of unification in CB. In case (a),
for example,

(25-8[m5ec] —24.1 [msec])/24~ 1 [msec] — 7-0($]-

According to the table, the overhead of network construction i1s at most
7 to 8 percent of the cost of initial generation. Note that in case of actual text
generation the process would include not only the above operations but also
various other kinds of operations; such as unification of pattern features and
control of constituent-wise recursive unification. The relative cost of network
construction involved in these operations should be much smaller than that of
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Table 1 Overhead of network handling.

unification backtracking
(@ | ) | (@ | (@ | (b) | (0
CB  [msec] | 241[ 273 165| 04| 08[ 06]
'DDB [msec] | 258 | 293 | 174 01| 32| 02"
56| 61| 56]
‘overhead[%] | 70| 73| 55| 220[ 3L1[ 315]
S (SONY NEWS 3860)

network construction involved in unification operations as examined in this
experiment. Therefore, the overhead of network construction is expected to be
smaller than the results of this experience (see Section 4.2).

We also examined the cost of backtracking for canceling all the
unification operations in each of cases (a) to (c). The results are shown in the
column of backtracking in Table 1. In the row of DDB, the upper row denotes
the cost of state propagation and the lower denotes that of removing invalid
features. The bottom row denotes the ratio of the overhead of network handling
in backtracking to the cost of unification in CB. In case (a), for example,

{(0 I [msec] + 5-6[msec]) - 0.4(msec] }/24 1 [msec] — 22.0[,‘].

One might say that network handling seems fairly expensive. In actual
text generation, however, the system would spend relatively higher proportion of
the total time on unification in each revision cycle. This is because actural
unification would encounter a number of unification failures, and furthermore
it would require additional operation that are not included in this experiment
as mentioned above; on the other hand, the cost of backtracking depends not on
the cost of unification but just on the sizes of WFDs. The former will be higher
as the grammer becomes complicated, while the latter will not. Therefore, the
relative cost of network handling for backtracking is expected to be significantly
smaller than the results shown in the table.

4.2 Experiment (2)

Next, we used a small experimental Japanese grammar, which consists of
39 grammatical disjunctions and 38 lexical entries. to evaluate the performance
of our algorithm in a more natural setting. Figure 11 shows an input WFD
represented in terms of rhetorical structure.!” In this figure, features n and s mean
nucleus and satellite respectively. Those constituents labeled n and s are orga-
nized in terms of a rhetorical relation elaborate.

The draft initially generated from this input is draft (1) shown below,
where both the propositions keep and located are realized by a single sentence.
This draft, however, includes an unexpected long noun modifier “tonari-no
tatemono-no 4 kai-no itiban oku-ni aru (which is located in the most inner part
on the fourth floor of the next building)”. The system detects this problem and
solves it by changing a culprit choice. The second draft is draft (2). Note that the
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Fig. 11 The input WFD.

first sentence in draft (1) is split into two sentences in draft (2).

Draft (1) sono syorui-wa tonari-no tatemono-no 4 kai-no itiban oku-ni aru

sirybsitu-ni hokansareteimasu. tadasi, sirydsitu-wa 7 gatu 21 niti-kara 8
gatu 31 niti-made-no natuyasumi-no aida-wa tukaemasen.

(That document is kept in the document room which is located in the
most inner part on the fourth floor of the next building. It will be closed
during the summer vacation from July 21 to August 31.)

Draft (2) sono syorui-wa sirydsitu-ni hokansareteimasu. sirydsitu-wa tonari-no

tatemono-no 4 kai-no itiban oku-ni arimasu. tadasi, 7 gatu 21 niti-kara
8 gatu 31 niti-made-no natuyasumi-no aida-wa tukaemasen.

(That document is kept in the document room. It is located in the most
inner part on the fourth floor of the next building. It will be closed during
the summer vacation from July 21 to August 31.)

Here we introduce another counterpart: the bk-class framework proposed

by Elhadad.® A bk-class is a pair of the name of a feature and the choice points
that may cause a failure of unification of that feature. When unification fails at
a certain bk-class feature, the system goes directly back to the latest bk-class
choice point, ignoring all the intermediate choices. Bk-class’ would play a role
similar to our revision rules. Significant differnces between the bk-class frame-
work and ours can be summarized in the following three respects.

In our method, a revision rule can identify candidates of a certain culprit
choice by specifying both the path of a constituent with which that choice
1s associated, and the identifier of that choice. On the other hand, a
bk-class identifies candidates of a culprit choice only by specifying the
identifier of them. Since a revision rule describes candidates of a certain
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culprit choice more specifically than a bk-class does, the frequency of
backtracking in revision process in our method would be lower than that
in Elhadad’s.

In the bk-class framework, the system cancels all the chronologically
intermediate decisions when backtracking. Therefore, the system may
repeat the same computation as that done in the previous generation
process. Since we maintain a dependency network, on the other hand, we
can reuse the results of the computation that are independent of the
change of the culprit choice. This difference is significant particularly in
such cases that the draft has more than one proplems that can be solved
independently of one another . In such cases, our method would be able
to solve the problems one by one independently, while the bk-class
method would have to deal with the combinations of the problems.

In this paper, we assume that a revision rule identify a culprit choice by
specifying its identifier. But it is also likely that one would like to
describe a solution of a problem by specifying a particular feature to
remove from a WFD (a “culprit feature” as it were). In our method, since
the system maintains the dependencies between choices and features, the
system can identify the choice to change when given a culprit feature;
therefore, a solution can also be described in terms of a culprit feature. In
this sense, our framework is more general than the bk-class framework.

Table 2 CPU time to generate drafts.
draft 1 2 3 v 17 | Total
CB 1.18) 025 090 ~---| 117 11.80
bk-class | [.18 | 1.15| 136 — | —— 3.70
| DDB 123091 | —— | —— | — 2.14

(SONY NEWS 3860; [sec])

Table 2 shows the CPU time to generate draft (2) for each case. Our
framework solves the current problem by only a single backtrack; while, the
bk-class framework requires two, and furthermore chronological backtracking
reguires sixteen. In general, a bk-class does not identify the candidates of a
culprit choice as specifically as a revision rule; therefore, backtracks tend to
occur more frequently in the bk-class framework than in ours. In this example,
the bk-class algorithm generates draft (2°) below as the second draft, where the
second sentence in draft (1) is split into two sentences in vain. It does not solve
the problem in the first sentence.

Draft (2") sono syorui-wa tonari-no tatemono-no 4 kai-no itiban oku-ni aru
siry0situ-ni hokansareteimasu. tadasi, siry6situ-wa natuyasumi-no aida-
wa tukaemasen. natuyasumi-wa 7 gatu 21 niti-kara 8 gatu 31 niti-made
desu.

(That document is kept in the document room which is located in the
most inner part on the fouth floor of the next building. The document




7190 K. Inui, T. Tokunaga, and H. Tanaka

room will be closed during the summer vacation. The summer vacation is
from July 21 to August 31.)

In addition, note that the CPU time to generate the second draft in our frame-
work 1s less than the CPU time to generate the third draft in the bk-class
framework. This is because the system can avoid unnecessary recomputation in
the regeneration process.

Table 3 Overhead of network handling.

generation | backtracking
bk-class[mesc] 1.18 0.03
DDB [msec] 1.23 0.07
overhead [%] 42 34

Table 3 shows the CPU time for network handling in the initial genera-
tion and backtracking. Each column and row denotes analogous to that of
Table 1. The table says that the CPU time for the network construction was 4.2
percent of that for the initial generation, and furthermore that the cost of
network handling for backtracking was only 3.4 percent, which is much better
than the results of experiment (1).

Summarizing this section, in our implementation the overhead of DDB is
estimated to be at worst up to 35% of the initial generation process and it seems
reasonably small in actual cases. Comparing the potential advantages of our
method (e. g. avoidance of unnecessary recomputation) with its overhead, we
would conclude that it is worth introducing.

§5 Conclusion

In text generation, various kinds of choices need to be decided. Since
these choices depend on one another, it would be difficult in one-path genera-
tion frameworks to design a set of heuristic rules for optimal decisions. Introduc-
ing the revision process can be a solution to this problem. In our previous paper,
we presented a framework in which revision is realized as DDB.

In this paper, we have proposed an efficient implementation method to
realize DDB for text generation using FUG in Prolog. FUG is suitable for DDB
because FUG allows the decision order to be flexible. The system realizes DDB
in the following senses.

The system directly backtracks to a culprit choice point by referring to
the revision rules.

The system reuses the previous results if possible in the regeneration
process by referring to the dependency network.

Thus, the DDB mechanism enables the system to traverse the search space
efficiently.
We applied the framework of JTMS to the task of text generation with
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DDB. Similarly to JTMS, the system constructs a dependency network to
maintain dependencies among choices and features. However, we also need to
consider the overhead of network handling. We proposed a method to realize
efficient DDB by integrating a WFD and a network into a single data structure.
In this data structure, dependencies are represented as bindings of logical
variables, and updating the network is realized by means of destructive substitu-
tions. According to preliminary experiments, the cost of network handling seems
to be reasonably small.

With the Prolog implementation of FUG, Fasciano et al. improved the
efficiency by precompiling a grammar as a set of Prolog clauses, where each
feature roughly corresponds to a Prolog clause. Since this implementaion does
not require any interpreter of GFDs, it may be more efficient than our
interpreter-based implementation (like unify/5 in Fig. 7). Therefore, it would be
reasonable to integrate our method of network handling into Fasciano’s imple-
mentation. This should not be difficult since in our algorithm network construc-
tion is done simultaneously with unification of each atomic feature.

In addition, in our framework the grammar writer can describe a revision
rule such that it specifies a culprit feature, as it were, rather than a culprit choice;
i.e. a feature that should be removed to solve a problem. This is possible because
our method maintains the dependencies between choices and features. Our
framework provides a more general means to control the search process than
that without maintaining dependencies such as the bk-class framework.

Our method to implement DDB may be applicable to other applications.
However, we are not claiming that we have provided a general solution to the
problems of implementing DDB. Our solution works efficiently due to the fact
that features and choices never have any disjunctive justifications in FUG.

In this paper, we mentioned neither evaluating drafts nor revision plan-
ning. To realize the overall generation system, we need further research on both
evaluation criteria and revision rules. These issues depend on actual descriptions
of lexico-grammatical knowledge. In this context, we are now developing a
fairly large Japanese grammar based on the systemic-functional theory. We
believe the grammar will provide us with useful information for development of
good evaluation criteria and revision rules.
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