Incorporating Probabilistic Parsing into an LR Parser

*

- LR Table Engineering (4) -

Virach Sornlertlamvanichf, Kentaro Inuit, Kiyoaki Shiraif, Hozumi Tanakaf
Takenobu Tokunagat and Toshiyuki Takezawai
T Department of Computer Science, Tokyo Institute of Technology
I ATR Interpreting Telecommunications Research Laboratories
t{virach,inui,kshirai,tanaka,take}@cs.titech.ac.jp
I takezawa@itl.atr.co.jp

Abstract

We propose a probabilistic model for incorporating probability into a (G)LR parser. The
model is formalized based on stack transition during parsing distinguishing it from the

existing models proposed by Wright and Wrigley, and Briscoe and Carroll.

Our model

produces a remarkable improvement in statistical parsing with probability. Associating
probabilities directly to actions in an LR parsing table, and theoretically requiring only
one probability for each action promise model trainability and potential extension to other

related tasks.

1 Introduction

Probabilistic techniques have been introduced
to various kinds of natural language process-
ing tasks, due to the increasing availability of
text corpora. In syntactical parsing, probabilis-
tic techniques are utilized to rank the potentially
high numbers of parses generated for natural lan-
guage (NL) applications.

Several attempts have been made to prune
meaningless parses and aid in the selection of the
most likely parse from multiple parse candidates.
Fujisaki et al. [3] introduced the notion of a prob-
abilistic context-free grammar (P-CFG), with
probabilities trained in the Forward/Backward
manner. Wright and Wrigley [6] formalized a
method of mapping P-CFGs onto LR parsing ta-
bles by way of distributing the probabilities orig-
inally associated with a given CFG to each cor-
responding LR parsing action. As a result, the
parser can incrementally compute the probabil-
ity of each parse. Nevertheless, under Wright
and Wrigley’s model the resultant probability of
a parse is identical to that acquired from the orig-
inal P-CFG, despite the process of generating the
LR parsing table being greatly complicated.

Briscoe and Carroll [2] proposed a simpler way
of incorporating trained probabilities into each
parsing action of the LR parsing table. Proba-
bilities are computed directly from the frequency
of application of each action when parsing the

*“LRO0OOOOOOOOO

training corpus. Their method seems to be able
to exploit the advantages offered by the context-
sensitivity of LR parsing. LR parsing is, indeed,
context-sensitive in that reduce actions depend
on the state and lookahead symbol. But, without
the obvious formalization of their model, there is
doubt as to the validity of their method of in-
cluding the left context for reduce actions in an
attempt to increase the accuracy of computation
of parse probability.

In contrast to the formal models proposed by
Wright and Wrigley, and Briscoe and Carroll,
we formalize our model based on stack transi-
tion during parsing. Parse probability is de-
composed into a sequence of actions. Theoret-
ically, our model requires only one probability
for each action. Therefore, we can easily train
our model by computing the frequency of applica-
tion of each action when parsing the training cor-
pus (correctly hand-annotated corpus), and di-
rectly associate a probability with each action in
the LR parsing table. The results of our exper-
iments clearly show that our model outperforms
the other two in all cases, and is able to reduce
the per-word cross entropy of the task.

In this paper, we propose a probabilistic model
for LR parsers, with Section 2 describing the se-
mantics of state transitions. Section 3 briefly
reviews Briscoe and Carroll’s model, and com-
pares it to our model by means of the spareness
in training of free parameters. We then clarify the

context-sensitive nature of LR parsing, and point
out the dubious nature of Briscoe and Carroll’s
model in Section 4. Section 5 describes how a
probability is allocated to each action of the table,
through a simple example. Section 6 shows the
results of experiments made on the three models.

2 Language Model for Proba-
bilistic LR Parsing

Suppose we have a context-free grammar
(CFG) and its corresponding LR table. Let V,
and V; be the sets of nonterminal and terminal
symbols, respectively, of the CFG. Further, let
S and A be respectively, the sets of LR parse
states and parsing actions appearing in the LR
parsing table (LR table for short). For each state
s € S, the LR table specifies a set of possible in-
put symbols: La(s) C V;. Additionally, for each
coupling of a state s and input symbol [€ La(s),
the table specifies a set of possible parsing ac-
tions: Act(s,l) C A. Each action a € A is either
a shift action or reduce action. Let Ag and A, be
the sets of shift and reduce actions, respectively,
such that A = A;UA, U{accept} (accept is a spe-
cial action denoting the completion of parsing).

As with most statistical parsing frameworks,
given an input sentence, we rank the parse tree
candidates according to the probabilities of the
parse derivations that generate those trees. In LR
parsing, we can regard each parse derivation as a
sequence of transitions between LR parse stacks.
Let us consider a stack transition sequence T as:

ln,apn

LYy 5 2 Onot 2% g, (1)

ln—1,apn-1
o) — 01 —
where o; is the stack at time ¢;, whose stack-top
state is denoted by top(c;), and [; and a; are,
respectively, an input symbol and a parsing ac-
tion chosen at time ¢;. It can be proven from
the LR parsing algorithm that, given a derived
input symbol l;11 € La(top(o;)) and an action
a;+1 € Act(top(oi),liy1), the next (derived) stack
oir1 (= next(o;,a;11)) can always be uniquely
determined. A parse derivation completes suc-
cessfully if [,, = $ and a,, = accept. We say
stack transition sequence T is complete if [,, = §,
an, = accept, and st, = final, where final is a
dummy denoting the stack when parsing has com-
pleted. Hereafter, we consistently refer to an LR
parse state as a state and an LR parse stack as a
stack. Unless defined explicitly, s; denotes the

stack-top state of the stack o; at time ¢;, i.e.
s; = top(o;).

Herewith, the stack transition sequence T is
decomposed into a sequence of stacks (), input
symbols (L) and parsing actions (A).

T ={3,L,A} 2)

Given an input W, where W is a word se-
quence, the probability of a parse derivation is
defined as follows,

W = {w,we,...,wn} (3)
P(T|W) = P(3,L,AlW) (4)
= aw-P(X,L,A)- P(W|S, L, A) (5)

~ aw - P(S,L,A) - P(W|L) (6)

Since our aim is to rank the probability of each
stack transition, the scaling factor ay in equa-
tion (6) can be omitted. In addition, the word
sequence (W) is assumed to be independent of
all other factors except for the sequence of input
symbols (L).

In equation (6), P(X, L, A) is the LR parsing
action probability and estimates the probability
of the parse derivation in terms of the sequence
of state transitions, while P(W|L) is the lezical
probability and estimates the word sequence when
the sequence of input symbols is estimated by
P(X,L,A). The probability derived from equa-
tion (6) is, in other words, a kind of generation
probability. Considering the LR parsing action
probability term, the probability of a complete
stack transition 7" can be decomposed as follows:

P(%,L,A)
yOn—1, ln, Qn, UTL) (7>

= P(oo) - [[Pli, ai, i
=1

= P(oo,l1,a1,01,. ..

O—Oallaalaala"'al’i—laa’i—lagi—l) (8)

In the LR parsing model, every parse derivation
starts from the initial state (sg), and therefore:

P(og) = P(s0) =1 (9)

According to the Markov assumption, it is pos-

sible to assume that the stack at time ¢; depends

only on the state at time ¢;_y. Therefore, we can
simplify equation (8) to:

P(T) = HP(Ui;li;ailgi—l) (10)
=1

Furthermore, it is possible decompose the above
probability P(o;,[;, a;|oi—1) into individual terms
which we can estimate as:

P(o;,l;,ai|l0i-1) =
P(li|0'¢_1) -P(a¢|ai_1, ll') . P(Uil(fz'—l, ai, ll') (11)

Considering the LR table, the state symbol sum-
marizes the information contained in the stack
below it, and the combination of the state symbol
on top of the stack and the current input symbol
is used to index the parsing table and determine
the parsing decision. Hence we estimate the state
on top of the stack instead of the stack below it.

To begin with, we estimate the first term
P(l;|oi—1) of equation (11) according to the type
of the state, as follows.

In the initial state ¢ = 1, where the stack con-
tains only the initial state, the stack is the initial
state itself.

P(lll()'()) :P(l1|80) (12)

For non-initial states, we consider the state as
being one of two different classes. The first class
consists of states reached after applying a shift
action (Ss). The next input symbol is newly pre-
dicted at parse time by the state on top of the
stack. Therefore,

P(l;|loi—1) = P(li|si—1) (13)

The second class consists of states that are
reached after applying a reduce action (S,). Since
the input symbol for the current state is already
estimated in the state before the reduce action,
the input symbol does not change (I; = [;—_1).
Therefore,

P(li|oi_1) = 1 (14)

For the second term P(a;|0i—1,[;) of equation
(11), the probability of the current action a; can
be estimated from the state s;—1 on top of stack
0i—1, and the input symbol /;.

P(ai|oi—1,1l;) = P(a;|si—1,1;) (15)

For the third term P(o;|0;—1, a;, ;) of equation
(11), the current stack o; is unambiguously de-
termined when the previous stack o;_1 and the
current action a; are fixed, therefore,

P(oj|loi—1,a,li) =1 (16)

From equation (11) to (16), we can summarize
the LR parsing action probability as follows,

L) Py ailsict) (sic1 €85)
P(llyalyo-llo-l—l) ~ {P(ailsi—l,li) (Si_l c ST)
(17)

Since S, and S, are mutually exclusive, we can
assign a probability to each action in the action
part of an LR table, according to equation (17).
To be more specific, for each state s € S, we
associate a probability p(a) for each action a €
Act(s,1) (I € La(s)), where p(a) = P(l,als), such
that:

D

l€La(s) a€Act(s,l)

pla) =1 (forseS;) (18)
On the other hand, for each state s € S,, we

associate a probability p(a) for each action a €
Act(s,1) (I € La(s)), where p(a) = P(als,[), such

that:
>, pla)=1

a€Act(s,l)

(for s € S;) (19)

Through assigning probabilities to actions in an
LR table in this way, we can estimate the proba-
bility of a stack transition sequence T" as given in
(1) by computing the product of the probabilities
associated with all the actions included in T"
n
P(T) = [p(a:) (20)
=1
We can estimate the lexical probability [4],
P(W|L) in equation (6), through decomposition
and estimation, by assuming that the probability
of the current word depends only on its part-of-
speech!. This estimation is made with the follow-
ing equation.
n
P(W|L) =~ H P(w;|l;)
=1

(21)

The new input word is taken into account only
when the previous action is a shift action. If the
previous action is a reduce action, the current in-
put word is always identical to the previous input
word. Therefore, in the same manner as for the
estimation of the LR parsing action probability,
the lezical probability can be defined as follows:

P(willi) (32'—1 € SS)

P(will;) = { 1 (si—1 € S;) (22)

n our case, the terminal symbols used in the LR table
are the parts-of-speech of input words

3 Comparison with Briscoe and

Carroll’s Model

In this section, we briefly review Briscoe and
Carroll’s model [2] and make a qualitative com-
parison with our model.

In out model, the probabilities of transitions
between stacks are considered, as given in equa-
tion (10), whereas Briscoe and Carroll consider
the probabilities of transitions between LR parse
states as:

1 P, ai, silsi-1)

=1

= [P(li, ailsi-1) - P(si|si-1,li, ai) (24)
i1

P(T)

Q

(23)

Briscoe and Carroll initially associate a proba-
bility p(a) with each action a € Act(s,l) (I €
La(s)) in an LR table, where p(a) corresponds to
P(l;,ai]si—1), the first term in (24):

p(a) = P(l,als) (25)

such that:

Vs e S. Z Z

l€La(s) a€Act(s,l)

pla) =1 (26)

As such, the probability associated with each ac-
tion is normalized in the same manner for all
states. However, as discussed in the previous sec-
tion, the probability assigned to an action should
be normalized differently depending on whether
the state associated with the action is of class
Ss or S;, as in equations (18) and (19). With-
out this differentiation, probability P(l;|s;—1) in
equation (13) could be duplicated for a single ter-
minal symbol. As a consequence, in Briscoe and
Carroll’s formulation, the probabilities of all the
complete parse derivations may not sum up to
one.

Briscoe and Carroll are also forced to include
the second term P(s;|si—1,1;, a;) in (24) since it is
not always one. In general, if we only have the in-
formation of the current state and apply a reduce
action, we cannot always uniquely determine the
next state. For this reason, Briscoe and Carroll
further subdivide the probabilities assigned to re-
duce actions according to the state reached after
the reduce action is applied. Contrastively, in
our model, given the current stack, the stack pro-
duced after the application of any action can be
uniquely determined as in (16).

4 Context-Sensitivity in GLR

Parsing

(Generalized) LR parsers are driven by a pre-
compiled LR table, generated from a context-free
grammar. Though the grammar used in gener-
ating the table is context-free, the nature of the
table and the manner in which the LR parser is
driven, make the parser mildly context sensitive.
Briscoe and Carroll raised this issue in [2] but
misinterpreted some aspects of the context sen-
sitivity, causing the number of free parameters
to increase unnecessarily and resulting in on un-
expectedly complicated probability model. We
will come back to this point after describing the
context-sensitivity nature of (G)LR parsing.

In the process of generating an LR table, each
state in the table is generated by applying the
goto function, (as described in [1]), to the previ-
ous state (s; = goto[s;—1, X;]). Each new state
(s;) is generated by consulting the previous state
(si—1) and a grammar symbol (X;), where X; is
a terminal symbol in the case of the next input
symbol being incorporated onto the stack, or a
non-terminal symbol when the stack is reduced
by way of an appropriate reduction rule. Each
state in the LR parsing table thus contains a lo-
cal left context for the parser.

On the other hand, at parse time, the action
in the LR table is determined by the pair of the
state and input symbols (a; 11 = action[s;, li11]).
This means that at time ¢;, when the parser has
come to a state (s;), the parser will consider the
next input symbol (/;41) in determining the next
action (a;y1). The next input symbol here pro-
vides the parser with a right contert to aid in
the determination process. Basically, the context
taken into account during parsing is limited to
one viable state and one input symbol.

In parsing natural language, ambiguity in-
evitably occurs for a fixed state and input sym-
bol. Ambiguity occurs when there is more than
one action corresponding to the given state and
input symbol. Two cases exist for potential ac-
tion conflicts: reduce/reduce conflicts (Figure 1)
and shift /reduce conflicts (Figures 2 and 3). Due
to the properties of LR tables, shift /shift conflicts
never occur.

Let us consider the case of parsing with a
grammar for constructing a binary tree. Re-
duce/reduce conflicts represent the dilemma of
deciding which non-terminal label should be asso-

Xa/Xb

\Yiuce
b E c
Si

Figure 1: Reduce/reduce conflict

o o o a

ciated with the structure (for instance, X, or Xj
in Figure 1), and shift/reduce conflicts constitute
the problem of deciding whether to incorporate
the next input symbol (d) onto the stack and de-
lay construction of hierarchical structure to the
next step (see Figure 2) or to create structure
based on the previous stack (see Figure 3). In
the case of parsing with only P-CFG, the most
we can do is to assign a probability to each rule,
based on the premise that the probabilities for
all the rules that expand a common non-terminal
must sum to one. Disambiguation in the case
of Figure 1 is then made based on the compari-
son between the probabilities for [X, — a b] and
[Xp — a b]. This same methodology is also used
to disambiguate between Figures 2 and 3.

For both conflict types, the LR parser at
least provides the left/right context to distin-
guish probabilities for reducing to the same non-
terminal. The overall probability for reducing to
X, may be higher than to X3 but in some context,
such as Figure 1, the probability for reducing to
X} can be higher than for X,. The LR parser
provides the context of the state number (s;) and
input symbol (c) to determine parse preference.
Similarly, the context of state number (s;) and
input symbol (d) in Figures 2 and 3 can be used
to give the preference to either shift or reduce.

L Xe
Xa .1 Xb

D c E d ::73 e
*r——
Si shift

e o 0 a b

Figure 2: Shift preference for a shift/reduce con-
flict

Briscoe and Carroll [2] have pointed out some
examples of NL phenomena that an LR parser
can inherently handle. In the example of he loves
her, an LR parser can distinguish between the
contexts for reducing the first pronoun and the

o xd

Xa \\\
kduce
e e a b [1e X«

Si
Figure 3: Reduce preference for a shift/reduce
conflict

second pronoun to NP, given that the next input
symbol after he is loves, while that for her is the
sentence end marker ($). However this does not
work if the next input symbols are the same, such
as the reduction of pronouns in the examples of
he passionately loves her and he loves her pas-
stonately. As previously mentioned, Briscoe and
Carroll proposed an approach of subdividing re-
duce actions according to the state reached after
that reduce action is applied. The purpose of this
approach is to distinguish between reductions us-
ing the left context of the reduction rule.

Subdividing reduce actions according to the
state reached after the reduce action is one of the
factors that leads to Briscoe and Carroll’s model
being unexpectedly complicated and including an
unnecessarily large number of free parameters.

As we have described above regarding the left
context of the LR parsing scheme, every state is
generated by consulting the previous state and a
grammar symbol. The states contain some local
context, with the degree of the context depend-
ing directly on the type of the table, namely SLR,
LALR or CLR (see [1]). Furthermore, the states
reached after reduce actions (for instance, s; and
s, in Figure 4) are determined deterministically.
This is accounted for in our probabilistic model-
ing in Section 2.

Xa Xa

] a® be® X e o0] a® b® %

Si Sj Sk Sx Sy Sz

(a) (b)

Figure 4: Reduction of [X, — a b] in different
contexts

The context sensitivity when parsing with ei-
ther an LALR or CLR table is different, because
during the process of generating an LALR table,
states are merged together if they fulfill the re-

quirement of have the same core in the LR item
[1]. As a result, the number of states in an
LALR table is drastically decreased when com-
pared a CLR table. Therefore, the left context
contained in states in an LALR table is less than
that for states in a CLR table (for further discus-
sion see [5]). Despite this, however, the results
of an experiment presented in Section 6 confirm
that parsing with an LALR table does not signif-
icantly decrease accuracy.

5 Incorporating Probability into
an LR Parsing Table

Our model described in Section 2 normalizes
the probability is differently depending on the
class of the state, either Ss or S,. States are
distinguishable because of the property that the
state classes for an LR table are mutually exclu-
sive. This is because any state can be reached by
only one type of grammar symbol. The states in
the S, class are those states referenced by tran-
sitions in the goto part of the table, and all other
states are in the S, class.

Suppose that we have a simple English context-
free grammar as shown in Table 1, with LR table
as shown in Table 2. We train our LR parser
in the supervised mode, using a correctly hand-
annotated corpus to guide the parser in its ex-
traction of the sequence of actions required to
produce the correct parse. We sum the frequency
of application of each action, and add a part of
a count to each action that appears in the table,
to smooth the probability for unobserved events.
Finally, each action probability is computed ac-
cording to the state class which the action belongs
to.

Table 1: A simple English context-free grammar

(1) s — NP VP
(2) NP — det n
3) NP — n

(4 NP — NP PP
(5 PP — p NP
(6) VP — v NP
(7)) VP — VP PP

Table 3 shows the artificial probability associ-
ated with each action. It is noticeable that the
probabilities of actions in states in the Sy class
(states 0, 1, 2, 4, 5, and 6) sum to one, but for
states in the S, class (states 3, 7, 8, 9, 10, 11 and
12), the probabilities of the actions in the slot of

Table 2: LR table for the English grammar in
Table 1

Action Goto
State det n P v $ NP PP S VP
0 s2 sl 3 12
1 r3 r3 r3
2 s4
3 sb s6 7 8
4 r2 r2 r2
5 s2 sl 9
6 s2 sl 10
7 r4 r4 r4d
8 s5 rl 11
9 r5/s5 r5 r5 7
10 r6/s5 r6 7
11 7 r7
12 acc

state and the input symbol sum to one. Table 3
does not show the goto part because actions in
the goto part are deterministic and their proba-
bilities are always one.

Table 3: LR table with its associated probabilities

Action
State | det | n P v $
0 s2 sl
0.6 | 0.4
1 r3 r3 r3
0.4 0.5 | 0.1
2 s4
1
3 sH s6
1 1
4 r2 r2 r2
0.3 0.6 | 0.1
5 s2 sl
0.7 | 0.3
6 s2 sl
0.7 | 0.3
7 r4d r4d r4
1 1 1
8 sH rl
1 1
9 r5/sb 5 | 15
0.7/0.3 1 1
10 r6/s5 6
0.4/0.6 1
11 r7 r7
1 1
12 acc
1

6 Experiments

We tested our model (P-LR) on two Japanese
corpora. Those two corpora were different in both
their sources and their applied context-free gram-
mar, but about the same size. Our experiments
are designed to not be biased towards our model
in terms of the degree of complexity of the task.
For comparison of the performance of the differ-
ent models, we conducted tests with the P-CFG

model as the baseline, and also with Briscoe and
Carroll’s model (B/C)

6.1 ATR Corpus and Grammar

The ATR corpus is a tree bank (a collection
of trees annotated with a syntactic analysis, or
“trees” for short) of Japanese dialogue. We ran-
domly selected about 5% of the corpus to use as
the test set and trained each parsing model with
the remaining approximately 20,000 trees (see Ta-
ble 4). The smallest sentence unit is a Japanese
morpheme, and the length shown in the Table 4 is
the number of morphemes. All trees are licensed
by the Japanese phrase structure grammar devel-
oped at ATR. We generated an LALR table from
the grammar of 360 production rules, comprised
of 67 non-terminal symbols and 41 terminal sym-
bols. 376 states were generated in the LALR ta-
ble.

Table 4: ATR Corpus

of Morpheme
ATR Corpus | # of Sent. | Ave. Range
Training set 19,586 | 12.08 2-60
Test set 998 | 11.68 2-30

6.2 Results of the Experiment on the
ATR Corpus

In the test, we used the test set to generate a
sequence of parts-of-speech for each sentence, to
act as the input for each model. The evaluation
data for each model is shown as the percentage
of ranked candidate parses containing an exact
match to the standard parse. Candidate parses
were ranked based on the value of the parse prob-
ability. Table 5 shows the percentage of the exact
matches in 4 classes. “Exact-1” is the percentage
of most probable candidate parses that matched
the standard parse. “Exact-5” is the percent-
age of parse outputs containing an exact matched
parse ranked within top 5 parses and so on. To
make sure that the models can rank their output
parses accurately, we count the rank of the lowest
parse for parses of the same probability.

Table 5: Performance on the ATR Corpus

Rank P-CFG B/C| P-LR
Exact-1 76.05% | 74.45% | 82.77%
Exact-5 92.89% | 88.78% | 94.89%
Exact-10 95.69% | 91.98% | 96.69%
Exact-20 96.99% | 94.79% | 97.70%
Cross Entropy 2.72 N/A 2.40

Our model (P-LR) outperformed the other two
models in every ranking class, and the per-word
cross entropy is also less than that for the P-CFG
model. The per-word cross entropy of Briscoe
and Carroll’s model (B/C) is out of range be-
cause of the large number of free parameters used
to re-predict the next input symbol after applying
a reduce action. Our model returning the high-
est parsing accuracies and the lowest per-word
cross entropy, clearly shows that our model can
efficiently use the context information encoded in
the LR parsing scheme.

6.3 EDR Corpus and Grammar

In a similar way, we prepared another testing
environment using the EDR corpus, an entirely
different type of corpus. The EDR corpus is a
collection of Japanese documents extracted from
various newspaper sources, with the size of the
corpus given in Table 6. From the corpus, we se-
lected data which could be constructed by a set of
binary production rules, for the purpose of testing
the distinguishability of the phrase dependency of
each model.

Table 6: EDR Corpus

of Bunsetsu
EDR Corpus | # of Sent. | Ave. | Range
Training set 21,512 | 8.29 2-26
Test set 1,000 | 8.16 3-20

The grammar is a set of production rules mod-
eling inter-phrasal structure, consisting of 296 bi-
nary rules. The smallest sentence unit is the case-
marked phrase (bunsetsu). From the grammar,
we generated an LALR table consisting of 34 non-
terminal symbols, 25 terminal symbols and 478
states.

6.4 Results of the Experiment on the

EDR Corpus
Table 7: Performance on the EDR Corpus

Rank P-CFG B/C| P-LR
Exact-1 43.00% | 46.30% | 54.30%
Exact-5 78.10% | 76.90% | 83.70%
Exact-10 87.20% | 84.70% | 91.10%
Exact-20 92.10% | 91.20% | 94.50%
Cross Entropy 2.79 N/A 2.60

Though the complexity of the sentence struc-
ture increased for the EDR corpus and most parts
of the structure were constructed differently de-
pending on the context, our model still outper-
formed the other two models, (see Table 7). The

complexity of the task can be ascertained from
the per-word cross entropy, which is higher for
the EDR test set than for the ATR test set.

6.5 Additional Experiment with CLR
Table

We extended our experiment on the ATR cor-
pus to use a CLR table, which is more distinc-
tive in state assignment. The experiment was re-
peated for both Briscoe and Carroll’s model and
our P-LR model (note that the result for P-CFG
model does not change for different table types).
The CLR table occupied 814 states, more than
twice the number of states in the corresponding
LALR table. The overall performance using the
CLR table was slightly higher than that for the
LALR table, and the per-word entropy for the
CLR table was also slightly less than that for
the LALR table, (see Table 8). States in a CLR
table are more distinguishable than those in an
LALR table, but the drastic increase in states for
the CLR table causes data sparseness in training.
Thus, whereas we would expect the predictabil-
ity for a CLR table to be higher than that for an
LALR table, LALR tables perform similarly to
CLR tables given the same size of training data.
Considering the cost of table generation and pars-
ing time, using an LALR table is much more ef-
ficient.

Table 8: Performance on the ATR Corpus

B/C P-LR
Rank LALR CLR LALR CLR
Exact-1 74.45% | 74.75% || 82.77% | 83.37%
Exact-5 88.78% | 86.87% || 94.89% | 95.19%
Exact-10 91.98% | 91.08% || 96.69% | 96.79%
Exact-20 94.79% | 94.39% || 97.70% | 97.60%
Cross Entropy N/A N/A 2.40 2.32

7 Conclusion

We formalized a probabilistic model for GLR
parsing and applied the method to the construc-
tion of a probabilistic LR table. The results of
experiments clearly showed that our model (P-
LR) is able to make effective use of both left and
right context information within the LR parsing
scheme. As a result, our model outperformed
both Briscoe and Carroll’s model and the P-CFG
model in all tests. In addition, our model needs
only the probability for each action in the LR
table to compute the overall probability of each
parse. It is thus tractable to training with the

smallest amount of free parameters, and asso-
ciates a probability directly to each action. Since
the parse probability is incrementally calculated
from action probabilities, the parser can compute
the partial parse probability at any stage of the
parse. We plan to extend the P-LR model to the
parsing of sentences including unknown words,
using the predictability of the model. The P-LR
model is also expected to provide a means for re-
covering from ill-formed input sentences.

8 Acknowledgments

We would like to thank Masahiro Ueki for sup-
port in using MSLR and kindly adapting his
parser to be able to accumulate action counts
during the training phase. Taiichi Hashimoto
helped us to improve the probabilistic parser, and
Toshiki Ayabe helped with LR table generation,
especially in computing the state list for use with
the B/C model. In addition, Thanaruk Theera-
munkong of JAIST provided helpful discussions
on accumulating probabilities into a GLR packed
shared parse forest.

References

[1] Aho, A., Sethi, R. and Ullman, J. 1986. Compil-
ers: Principles, Techniques, and Tools. Addison-
Wesley.

[2] Briscoe, T. and Carroll, J. 1993. General-
ized Probabilistic LR Parsing of Natural Lan-
guage (Corpora) with Unification-Based Gram-
mars. Computational Linguistics, Vol.19, No.1,
pages 25-59.

[3] Fujisaki, T., Jelinek, F., Cocke, J., Black, E.
and Nishino, T. 1989. A Probabilistic Parsing
Method for Sentence Disambiguation. Proceed-
ings of 1st International Workshop on Parsing
Technologies, Carnegie-Mellon University, Pitts-
burgh, PA, pages 85-94.

[4] Inui, K., Shirai, K., Tokunaga, T. and Tanaka, H.
1996. Integration of Statistics-based Techniques
for Analysis of Japanese Sentences (in Japanese).
IPSJ-NL, SIG-NL-116-6.

[5] Inui, K., Sornlertlamvanich, V., Tanaka, H. and
Tokunaga, T. 1997. A new probabilistic LR lan-
guage model for statistical parsing. Technical Re-
port, 97TR-0004, Dept. of Computer Science,
Tokyo Institute of Technology.

[6] Wright, J. H. and Wrigley, E. N. 1991. GLR Pars-
ing with Probability. Generalized LR Parsing,
edited by Tomita, M., Kluwer Academic Pub-
lishers, pages 113-128.

