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Abstract

Word sense disambiguation is a crucial task in many NLP applications, including information
extraction. More recent corpus-based word sense disambiguation techniques generally use a database
containing supervised examples (annotated with correct word senses), and therefore constructing
a database of a practical size involves a considerable overhead for manual sense disambiguation
(“overhead for supervision”). In addition, the time complexity of searching a large-sized database
poses a considerable problem (“overhead for search”). To counter these problems, we previously
proposed a method which selectively samples a smaller-sized informative subset from a given example
set, to use in word sense disambiguation. Our method is characterized by its reliance on the notion
of “training utility”: the degree to which each example is informative for future example sampling
when used for the training of the system. The system progressively collects examples by selecting
those with greatest utility. In this paper, we extensively compare our method with other existing
sampling methods by way of experiments on about 3000 sentences. The result of the experiments
showed that our method reduced both the overhead for supervision and the overhead for search to a
larger degree than other methods, without degenerating the performance of the system.

1 Introduction

Word sense disambiguation is a crucial task in many NLP applications, such as machine translation [2],
parsing [20, 22] and text retrieval (16, 33). In this paper, we suggest that successful word sense dis-
ambiguation is expected to improve the accuracy of information extraction (IE) tasks. In typical IE
systems!, a natural language input undergoes morphological analysis, syntactic analysis, semantic anal-
ysis, and discourse analysis to generate templated information. Semantic analysis transforms parse trees
to semantic predicate-argument structures, that is, each verb along with its complement(s) in the parse
tree is assigned to one of a number of predefined structures. Most proposed systems assume that each
verb is uniquely associated with a given structure because verbs are expected to have consistent meaning
(sense) over a well-defined domain. This may well be true for the limited domain levels targeted in
proposed systems. However, by way of diversifying domains, disambiguation of verb senses will become
integral to semantic analysis, as most verbs will be associated with multiple senses, i.e. multiple struc-
ture candidates. One may argue that selectional restriction (generally carried out manually) described for
each argument slot could facilitate the correct selection of structure candidates. However, hand-encoding
rules entail considerable human effort, besides which rule-based disambiguation is prone to failure given
exceptional cases or unmodeled lexemes.

Given the growing utilization of machine readable texts, word sense disambiguation techniques have
been variously proposed in corpus-based approaches. Unlike rule-based approaches (some of which are
reviewed, for example, by Hirst [13]), corpus-based approaches release us from the task of generalizing
observed phenomena to make a set of rules. In this paper we focus on disambiguation of verb senses

1 As have been variously proposed at Message Understanding Conferences (MUCs).




based on such an approach, or more precisely an example-based approach. As with most example-
based systems [10, 17, 19, 31], our system uses an example database (database, hereafter) which contains
example sentences associated with each verb sense. Given an input sentence containing a sense ambiguous
verb, the system then chooses the most plausible verb sense from predefined candidates. In this process,
the system computes a scored similarity between the input and examples in the database, and choses
the verb sense that is related to the example maximizing the score. To realize this, we have to manually
disambiguate sense ambiguous verbs appearing in examples, prior to their use by the system. We shall
call these examples “supervised examples”. In order to apply this technique to IE systems, the following
problems have to be taken into account?:

e given human resource limitations, it is not reasonable to supervise every example in large corpora
(“overhead for supervision”),

o given the fact that example-based systems, including our system, search the database for the most
similar examples with regard to the input, the computational cost becomes prohibitive if one works
with a very large database size (“overhead for search”).

The former problem is also crucial when one tries to customize an IE system to several distinct do-
mains. To counter these problems, we proposed a novel method of selecting a small number of optimally
informative examples (“samples”) from given corpora, and demonstrated its effectivity in comparison
with a random sampling method [9]. In this paper, we describe a more extensive evaluation, in which
we compare our sampling method with other existing uncertainty sampling [18] and committee-based
sampling [7] methods.

Our example sampling method, based on the utility maximization principle, decides on the prefer-
ence for including a given example in the database. This decision procedure is usually called selective
sampling [5]. The overall control flow of selective sampling systems can be depicted as in figure 1, where
“system” refers to our verb sense disambiguation system, and “examples” refers to an unsupervised ex-
ample set. The sampling process basically cycles between the word sense disambiguation (WSD) and
training phases. During the WSD phase, the system generates an interpretation for each sense ambiguous
verb contained in the input example (“WSD outputs”). This phase is equivalent to normal word sense
disambiguation execution. During the training phase, the system selects samples for training from the
previously produced outputs. During this phase, a human expert supervises samples, that is, provides
the correct interpretation for the verbs appearing in the samples. Thereafter, samples are simply con-
tained in the database without any computational overhead, meaning that the system can be trained
on the remaining examples (“residue”) for the next iteration. Iterating these two phases, the system
progressively enhances the database. Note that the selective sampling procedure gives us an optimally
informative database of a given size irrespective of the stage at which processing is terminated.

database

supervision

sampling

Figure 1: Flow of control of the example sampling system

With respect to the problem of overhead for search, possible solutions would include the generalization
of similar examples [14, 24] or the reconstruction of the database using a small portion of useful instances

2Note that these problems are associated with corpus-based approaches in general, and have been identified by a number
of researchers [7, 18, 30, 34].




selected from a given supervised example set [1, 28]. However, such approaches imply a significant
overhead for supervision of each example prior to the system’s execution. This shortcoming is precisely
what our approach aims to avoid: reduction of the overhead for supervision as well as the overhead for
search.

Section 2 briefly describes the basis of our verb sense disambiguation system. Section 3 then elaborates
on our example sampling method, and section 4 compares our method with other proposed sampling
methods by way of experiments. Discussion is added in section 5, followed by the conclusion.

2 Example-based verb sense disambiguation

Our system, which disambiguates Japanese verbs®, uses a database containing examples of collocations
for each verb sense and its associated case frame(s). Figure 2 shows a fragment of the database associated
with the Japanese verb tsukau, some of which senses are “to employ”, “to operate” and “to spend”. The
database specifies the case frame(s) associated with each verb sense. In Japanese, a complement of a
verb consists of a noun phrase (case filler) and its case marker suffix, for example ga (nominative), ni
(dative) or wo (accusative). The database lists several case filler examples for each case. Given an input,
the system identifies the verb sense on the basis of the similarity between the input and examples for
each verb sense contained in the database. Let us take the following input:

enjinia ga fakkusu wo tsukau.
(engineer-NOM) (facsimile-ACC) (?)

In this example, one may consider enjinia (“engineer”) and fakkusu (“facsimile”) to be semantically
similar to gakusei (“student”) and konpyuutaa (“computer”), respectively, from the “to operate” sense
of tsukau. As a result, tsukau is interpreted as “to operate”. To formalize this notion, the system
computes the plausibility score for each verb sense candidate, and chooses the sense that maximizes the
score. The score is computed by considering the weighted average of the similarity of the input case fillers
with respect to each of the corresponding example case fillers listed in the database for the sense under
evaluation. Formally, this is expressed by equation (1), where Score(s) is the score for verb sense s. n¢
denotes the case filler for case ¢, and &g ¢ denotes a set of case filler examples for each case ¢ of sense s
(for example, £ = {kare, kigyou} for the ga case in the “to employ” sense in figure 2). sim(nc,e) stands
for the similarity between nc and an example case filler e.

Score(s) = ZCCD(C)' max sim(nc,e) (1)
c eeé’s,c

CCD(c) expresses the weight factor of case ¢ using the notion of case contribution to verb sense dis-
ambiguation (CCD) proposed by Fujii et al [10]. Intuitively, the CCD of a case becomes greater when
example sets of the case fillers are disjunctive over different verb senses. In the case fillers of figure 2, for
example, CCD(ACC) is greater than CCD(NOM) (see Fujii et al’s paper for details).

Here, let us discuss the overhead for parsing required to identify case fillers. A number of IE systems
employ partial parsing to identify only cases more highly proximal to verbs, instead of full parsing.
Similarly, our word sense disambiguation method does not require full parsing because our preliminary
experiments have shown that (a) cases more highly proximal to a target verb tend to have greater CCD,
and (b) we can maintain the performance of word sense disambiguation relying solely on such cases with
greatest CCD.

In regard to the computation of the similarity between two different case fillers (sim(nc,e) in equa-
tion (1)), there are two alternative approaches. One approach uses semantic resources, that is, hand-
crafted thesauri (such as the Roget’s thesaurus [3] or WordNet [21] in the case of English, and Bunruigo-
hyo (23] or EDR [6] in the case of Japanese), based on the intuitively feasible assumption that words
located near each other within the structure of a thesaurus have similar meaning. Therefore, the simi-
larity between two given words is represented by the length of the path between them in the thesaurus

30ur sampling method is theoretically applicable to other languages.
4Unlike the automatic acquisition of word sense definitions [11, 32], the task of the system is to identify the best matched
category with a given input, from predefined candidates.




kare (he) ; . .
{kigyou (compzmy)} ga {kzkaku (project) } ni {

Jyuvugyouin (employee)

sotsugyousei (graduate) } wo tsukau (to employ)

kanojo (she)
gakusei (student)

{

shigoto (work)

kenkyuu (resea.rch)} nt {

konpyuutaa (computer)

{ kare (he)

seifu (government)

J= 4

kuruma (car)
fukushi (welfare)

- |

nenryou (fuel)
shigen (resource) » wo tsukau (to spend)
zetkin  (tax)

Figure 2: A fragment of the database associated with the Japanese verb tsukau

structure [17, 19, 31). Our previous work also followed this approach [9]. However, this type of approach
is often associated with human overhead and bias. In addition, one may argue about the applicability of
our sampling framework to other languages if we rely on an existing Japanese thesaurus for the similarity
computation. In consideration of these problems, we adopted statistical models [4, 12, 29] for the pur-
pose of this paper. Here, each noun n can be represented by a vector comprising statistical co-occurrence
factors. This is expressed by equation (2), where 7 is the vector for the noun in question, and ¢; is the
co-occurrence statistics of » and each co-occurring verb.

=<ty ta, ..., tiy ...> (2)

Co-occurrence data was extracted from the RWC text base RWC-DB-TEXT-95-1 [26]. This text base
consists of 4 years worth of Mainichi Shimbun [27] newspaper articles, which have been automatically
annotated with morphological tags. The total morpheme content is about 100 million. Instead of con-
ducting full parsing on the text, several heuristics were used in order to obtain dependencies between
complements (noun + case marker) and verbs in the form of tuples <n,c,v>. In regard to t;, we used
the notion of TF-IDF (8], in which ¢; is calculated as in equation (3), where f(<n,c,v>) is the frequency
of the tuple <n,c,v>, f(<e¢,v>) is the frequency of tuple <¢,v>, and T is the total number of the
tuples within the overall co-occurrence data.

ti=f(<n,C,v>)'1°gm (3)

We then compute the similarity between nouns ne and e by the cosine of the angle between the two
vectors 7ic and €. This is realized by equation (4).
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sim(nc, e) = (4)

o}

3 Sampling algorithm

3.1 Overview

Let us look again at figure 1 in section 1. In this figure, “WSD outputs” refers to a corpus in which each
sentence is assigned an expected interpretation of the verb during the WSD phase. In the training phase,
the system stores supervised samples (with each interpretation simply checked or appropriately corrected
by a human) in the database, to be used in a later WSD phase. In this section, we turn to the problem
as to which examples should be selected as samples.

Lewis et al. proposed the notion of uncertainty sampling for the training of statistics-based text
classifiers [18]. Their method selects those examples that the system classifies with minimum certainty,
based on the assumption that there is no need for teaching the system the correct answer when it has
answered with sufficiently high certainty. However, we should take into account the training effect a given
example has on other remaining (unsupervised) examples. In other words, we would like to select samples
such as to be able to correctly disambiguate as many examples as possible in the next iteration. If this is
successfully done, the number of examples to be supervised will decrease. We consider maximization of




this effect by means of a training utility function aimed at ensuring that the example with the greatest
training utility factor, is the most useful example at a given point in time. Intuitively speaking, the
training utility of an example is greater when we can expect greater increase in the interpretation certainty
of the remaining examples after training using that example.

Let S be a set of sentences, i.e. a given corpus, and D be the subset of supervised examples stored in
the database. Further, let X be the set of unsupervised examples, realizing equation (5).

S=DuX (5)
The example sampling procedure can be illustrated as:
1. WSD(D,X)
2. e — argmax, x TU(z)
3. D—Du{e}, X —Xn{e}
4. goto 1

where WSD(D, X) is the verb sense disambiguation process on input X using D as the database. In
this disambiguation process, the system outputs the following for each input: (a) a set of verb sense
candidates with interpretation scores, and (b) an interpretation certainty. These factors are used for the
computation of TU(z), newly introduced in our method. TU(z) computes the training utility factor for
an example z. The sampling algorithm gives preference to examples of maximum utility.

We will explain in the following sections how one can estimate TU(z), based on the estimation of the
interpretation certainty.

3.2 Interpretation certainty

Lewis et al. estimate certainty of an interpretation as the ratio between the probability of the most
plausible text category, and the probability of any other text category, excluding the most probable one.
Similarly, in our verb sense disambiguation system, we introduce the notion of interpretation certainty
of examples based on the following preference conditions:

1. the highest interpretation score is greater,
2. the difference between the highest and second highest interpretation scores is greater.

The rationale for these conditions is given below. Consider figures 3 and 4, where each symbol denotes
an example in a given corpus, with symbols z as unsupervised examples and symbols e as supervised
examples. The curved lines delimit the semantic vicinities (extents) of the two verb senses 1 and 2,
respectively’. The semantic similarity between two examples is graphically portrayed by the physical
distance between the two symbols representing them. In figure 3, z’s located inside a semantic vicinity
are expected to be interpreted as being similar to the appropriate example e with high certainty, a fact
which is in line with condition 1 above. However, in figure 4, the degree of certainty for the interpretation
of any z which is located inside the intersection of the two semantic vicinities cannot be great. This occurs
when the case fillers associated with two or more verb senses are not selective enough to allow for a clear
cut delineation between them. This situation is explicitly rejected by condition 2.

Based on the above two conditions, we compute interpretation certainties using equation (6), where
C(x) is the interpretation certainty of an example z. Score;(z) and Scorey(z) are the highest and second
highest scores for z, respectively. A, which ranges from 0 to 1, is a parametric constant used to control
the degree to which each condition affects the computation of C(z).

C(z) = X - Scorey(z) + (1 = X) - (Scorey (z) — Scorez(z)) (6)

5Note that this method can easily be extended for a verb which has more than two senses. In section 4, we describe an
experiment using multiply ambiguous verbs. -
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Figure 4: The case where the interpretation cer-
tainty of the z’s contained in the intersection of
senses 1 and 2 is small

Figure 3: The case where the interpretation cer-
tainty of the enclosed z’s is great

3.3 Training utility

The training utility of an example a is greater than that of another example b when the total interpretation
certainty of unsupervised examples increases more after training with example a than with example b.
Let us consider figures 5 and 6, in which the x-axis mono-dimensionally denotes the semantic similarity
between two unsupervised examples, and the y-axis denotes the interpretation certainty of each example.
Let us compare the training utility of the examples a and b in figure 5. Note that in this figure, whichever
example we use for training, the interpretation certainty for each unsupervised example (z) neighboring
the chosen example increases based on its similarity to the supervised example. Since the increase in the
interpretation certainty of a given  becomes smaller as the similarity to a or b diminishes, the training
utility of the two examples can be represented by the shaded areas. It is obvious that the training utility
of a is greater as it has more neighbors than b. On the other hand, in figure 6, b has more neighbors than
a. However, since b is semantically similar to e, which is already contained in the database, the total
increase in interpretation certainty of its neighbors, i.e. the training utility of b, is smaller than that of
a.

certainty certainty

xxxaxxx W xbx «x

xxxaxxx & xxxexbxxx

Figure 5: The case where the training utility of
a is greater than that of b because a has more
unsupervised neighbors

Figure 6: The case where the training utility of a
is greater than that of b because b closely neigh-
bors e, contained in the database

Let AC(z=s,y) be the difference in the interpretation certainty of y € X after training with z € X,
taken with the sense s. TU(z =s), which is the training utility function for z taken with sense s, can be
computed by way of equation (7).

TU(z=s)= Y AC(z=s,3) (7)
veX
51t should be noted that in equation (7), we can replace X with a smaller subset of X which consists of neighbors of

x: example y is a neighbor of z if they share the same supervised example e as their nearest neighbor. Since the system
determines e during the WSD phase, identifying the neighbors of z does not require any extra computationa! overhead.




Since there is no guarantee that z will be supervised with any given sense s, it can be risky to rely
solely on TU(z=s) for the computation of TU(z). We estimate TU(z) by the expected value of z,
calculating the average of each TU(z = s), weighted by the probability that z takes sense s. This can be
realized by equation (8), where P(z=s) is the probability that z takes the sense s.

TU(z) =)  Plz=s)-TU(z=9) (8)
8

Given the fact that (a) P(z=3s) is difficult to estimate in the current formulation, and (b) the cost of
computation for each TU(z=s) is not trivial, we temporarily approximate TU(z) as in equation (9),
where K is a set of the k-best verb sense(s) of £ with respect to the interpretation score in the current
state.

TU(z) ~ 71- 3" TU(z=s) )
seK

3.4 Time complexity

The number of samples selected at each iteration should ideally be one, so as to avoid the supervision
of similar examples. On the other hand, a small sampling size generates a considerable computation
overhead for each iteration of the sampling procedure. This can be a critical problem for statistics-based
approaches [4], as the reconstruction of statistic classifiers is expensive. However, fortunately, example-
based systems [10, 17, 19, 31] do not require reconstruction, and examples simply have to be stored in
the database.

Furthermore, in each disambiguation phase, our example-based system needs only compute the sim-
ilarity between each newly stored example and its unsupervised neighbors, rather than between every
example in the database and every unsupervised example. This reduces the time complexity of each
iteration from O(N?2) to O(N), given that N is the total number of examples in a given corpus.

4 Comparative evaluation

In this experiment, we compared the following four example sampling methods by evaluating the relation
between the number of samples and the performance of the system:

s acontrol (random), in which a certain proportion of a given corpus is randomly selected for training,

e uncertainty sampling (US), in which examples with minimum interpretation certainty are se-
lected [18],

¢ committee-based sampling (CBS) (7],
o our method based on the notion of training utility (TU).

In committee-based sampling, the system selects samples based on the degree of disagreement between
models randomly taken from a given set of supervised examples (these models are called “committees™).
This is achieved by the iteratively repeating the steps given below, in which the number of committees
is given as two without loss of generality’:

1. draw two committees randomly,
2. classify unsupervised example z according to each model, producing classifications C; and Cs,,
3. if C; # C; (the committees disagree), select z for the training of the system.

We collected sentences containing eight frequently appearing verbs (as test/training data) from the
EDR Japanese corpus [6] (originally produced from news articles). The input had to be both morpho-
logically and syntactically analyzed prior to the sense disambiguation process. For this purpose, we

"Engelson et al. applied this framework to HMM training for part-of-speech tagging [7].




experimentally used the Japanese morph/syntax parser “QJP” (15], disallowing sentences which did not
provide any complements of the target verb (in most cases, due to ellipsis or zero anaphora). The EDR
corpus also provides sense information for each word, based on the EDR dictionary. However, since it was
evident that sense classification criteria in the EDR dictionary were not necessarily clear even for human
experts, we used verb senses described in the NTT semantic dictionary {25]. In this dictionary, each
Japanese verb is subcategorized based on its English translations, and thus sense classification can be
achieved more impartially. We then removed sentences in which the target verb comprised an idiomatic
phrase®. As a result, the total number of sentences was 3185, and the average number of sense candidates
for each verb was 5.4. ‘

We conducted 4-fold cross validation, that is, we divided the training/test data into four equal parts,
and conducted four trials in which a different part was used as test data each time, and the rest as training
data, from which each sampling method selected samples. We evaluated each system’s performance
according to its accuracy, that is the ratio of the number of correct outputs, compared to the total number
of inputs contained in the test data. For the purpose of this experiment, we set A = 0.5 for equation (6)
so that the both preference conditions (see section 3.2) were equally reflected in the computation, and
k =1 for equation (9)°. To initialize the system for any sampling methods, we randomly selected one
example (seed) for each verb sense. Figure 7 shows the relation between the size of the training data
and the precision of the system. In figure 7, zero on the x-axis represents the system using only seeds.
Looking at figure 7 one can see that our method generally reduced the size of the training data (that is,
overhead for supervision and overhead for searching the database) required to achieve any given accuracy
compared with other three methods. For example, to achieve an accuracy of 80%, the size of the training
data required for our method was roughly one-forth of that for random sampling. This tendency was
also observed in our previous experiments [9]. Surprisingly, the result of random sampling was almost
equivalent to that of committee-based sampling, and uncertainty sampling performed worst.
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Figure 7: The relation between the number of training data sampled and accuracy of the system

5 Discussion

First, let us discuss the theoretical difference between uncertainty sampling and our method. Considering
figures 5 and 6 again, one can see that the concept of training utility is supported by the following
properties:

8For practical purposes, idiomatic expressions should be separately described in the database so that the system can
control their overgeneralization [31].

9Based on a preliminary experiment, increasing the value of k either did not improve the performance over that for
k=1.




1. an example which neighbors more unsupervised examples is more informative (figure 5),
2. an example less similar to one already existing in the database is more informative (figure 6).

Uncertainty sampling directly addresses property 2, but ignores property 1. It differs from our method
more crucially when more unsupervised examples remain, because these unsupervised examples have
a greater influence on the computation of training utility. This assumption can also be seen in the
comparative experiments in section 4, in which our method outperformed uncertainty sampling to the
highest degree in early stages.

Second, figure 8 shows a typical disparity evident between committee-based sampling and our sampling
method. The basic notation in this figure is the same as in figures 3 and 4, and both z and y denote
unsupervised examples, or more formally D = {e;. e}, and X = {z,y}. Assume a pair of committees
{e1} and {e;} have been selected from the database D. In this case, the committees disagree as to
the interpretations of both = and y, and consequently, both examples can potentially be selected as a
sample for the next iteration. In fact, committee-based sampling tends to require a number of similar
examples (similar to e; and y) in the database, otherwise committees taken from the database will
never agree. This feature provides a salient contrast to our method for which a similar example is less
informative, and z is therefore preferred to y as a sample. This contrast can also correlate to the fact that
committee-based sampling is currently applied to statistics-based language models (HMM classifiers), in
other words, statistical models generally require that the distribution of the training data reflects that of
the overall text. Through this argument, one can assume that committee-based sampling is better suited
to statistics-based systems, while our method is more suitable for example-based systems.

sense 1
sense 2

el x e2
y

Figure 8: A case where either z or y can be selected in committee-based sampling

6 Conclusion

In this paper, we suggested the possibility of applying word sense disambiguation to information extrac-
tion. A shortcoming of recent corpus-based word sense disambiguation techniques has been that they
tend to require a considerable overhead for supervision in constructing a large-sized database, additionally
resulting in a computational overhead to search the database. To overcome these problems, our method
selectively samples a smaller-sized subset from a given example set.

We reported on the performance of our proposed sampling method by way of experiments, in which
we compared our method with random sampling, uncertainty sampling {18] and committee-based sam-
pling [7]. As far as the corpus we used were concerned, our method reduced both the overhead for
supervision and the overhead for searching the database to a larger degree than any of the above meth-
ods, without degrading the performance of verb sense disambiguation.

Future work will include empirical evaluation of the application of our word sense disambiguation
technique to information extraction systems.
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