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Abstract

This paper describes a method for Japanese sen-
tence categorization based on word usage with dif-
ferent meanings, and demonstrates its effectivity by
way of experiments. Unlike conventional character-
based or word-based categorization, our categoriza-
tion scheme is characterized by its reliance on se-
mantic similarity between an input and supervised
examples in a database. For the similarity com-
putation, we tentatively compared two methods:
a thesaurus-based method and statistical method.
Our framework also provides a means of minimizing
the overhead required for constructing and search-
ing a database for a system of practical size. Our
experiments showed that our method reduced the
overhead, without degenerating the performance of
categorization.

1 Introduction

This paper describes a method for sentence cate-
gorization based on word usage with different mean-
ings (senses), and demonstrates its effectivity by
way of experiments. Our current research focuses
on Japanese verbs, such as the following input sen-

tence containing the polysemous verb toru:

hisho ga shindaisha wo toru.

(secretary-NOM)  (sleeping car-ACC) (?)
In Japanese, a complement of a verb consists of a
noun phrase (case filler) and its case marker suf-
fix, for example ga (nominative), ni (dative) or wo
(accusative). The verb toru has multiple senses,
some of which are “to take/steal”, “to attain” and
" “to reserve”. As with most categorization methods,
we rely on the use of a database, that is, a set of
supervised examples (manually disambiguated and
listed with verb sense). The input is then catego-
rized based on the scored similarity between exam-
ples in the database. Here, suppose the following
examples related to the senses “to attain” and “to
reserve” for toru:

gakusei ga biza wo toru,
(student-NOM) (visa-ACC) (“to attain”)
Jjoshu ga hikouki wo toru.

(assistant-NOM) (airplane-ACC) (“to reserve")

One may notice that the verb in the original input
can easily be categorized as the sense “to reserve”
baged on these examples, given that the case fillers
hisho (“secretary”) and shindaisha (“sleeping car”)
are semantically similar to joshu (“assistant”) and
hikouki (“airplane”) respectively, and both collo-
cate with the “to reserve” sense of toru. It should
be noted that this is different from conventional
character-based or word-based categorization in re-
spect of the fact that our framework is susceptible
to semantic relatedness between an input and su-
pervised examples. It should also be noted that
this framework is equivalent to the process termed
“word sense disambiguation” (WSD), which is one
of the crucial tasks of natural language processing
(NLP).

Our preliminary experiments showed that the ac-
curacy of categorization is roughly 60% when using
only limited examples taken from a machine read-
able dictionary, providing one or more examples for
each word sense entry. To achieve higher accuracy,
we simply obtain a text (“corpus”) and enhance the
database manually by annotating sentences in the
corpus with correct verb senses. On the other hand,
the following problems should also be taken into ac-
count:

e given human resource limitations, it is not rea-
sonable to supervise every example in large cor-
pora (“overhead for supervision”),

e given the fact that example-based systems, in-
cluding our system, search the database for -
the most similar examples with regard to the
input, the computational cost becomes pro-
hibitive if one works with a very large database
size (“overhead for search”).
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To counter these problems, our system extracts a
small number of optimally informative examples
(“samples”) from given corpora, for human super-
vision. Consequently we can expect to reduce both
overheads without degrading the system’s perfor-
mance. In our previous work, we demonstrated
the effectivity of this method by comparison with
a random sampling method {6]. In this paper, we
describe a'more extensive evaluation, in which we
compare our sampling method with an existing un-
certainty sampling method (13].

Section 2 elaborates on our categorization engine,
and describes an empirical evaluation of it, in which
our system achieved an accuracy of more than 80%.
Section 3 then introduces the notion of “certainty”
to achieve higher accuracy. Finally, section 4 elab-
orates on how to minimize overhead, without de-
grading the system’s accuracy.

2 Categorization engine

Our system, which was proposed by Kurohashi
et al. [12] and enhanced by Fujii et al. [7], uses
a database containing examples of collocations for
each verb sense and their associated case frame(s).
Figure 1 shows a fragment of the database asso-
ciated with the Japanese verb toru. The database
specifies the case frame(s) associated with each verb
sense. The database lists several case filler exam-
ples for each case. Given an input, the system iden-
tifies the verb sense on the basis of the similarity be-
tween the input and examples for each verb sense
contained in the database. In this process, we use
nearest neighbor resolution, that is, the verb in the
input is interpreted by superimposing the sense of
the verb appearing in the example of highest sim-
ilarity. To formalize this notion, the system com-
putes the plausibility score for each verb sense can-
didate, and chooses the sense that maximizes this
score. The score is computed by considering the
weighted average of the similarity of the input case
fillers with respect to each of the corresponding ex-
ample case fillers listed in the database for the sense
under evaluation. Formally, this is expressed by
equation (1), where Score(s) is the score for verb
sense s. n¢ denotes the case filler for case ¢, and £s,¢
denotes a set of case filler examples for each case ¢
of sense s (for example, £ = {kare, kanojo, gakusei}
for the ga case in the “to attain” sense in figure 1).
sim(ne, e) stands for the similarity between n¢ and
an example case filler e.

2cCCD(c) - maxeﬁgs'csim(nc, e)
2.cCCD(c)

Score(s) =

(1)

CCD(c) expresses the weight factor of the contri-
bution of case ¢ to (current) verb sense disambigua-
tion. Intuitively, preference should be given to cases
displaying case fillers which are classified in seman-
tic categories of greater disjunction. In this way, ¢’s
contribution to v’s sense disambiguation, CCD(c),
is likely to be higher if the example case filler sets
{€s;c | © = 1,...,n} share fewer elements. This
can be realized by equation (2). '

CCD(c) =

1 n-1
(nCQ
(2)

§j=£+l

Here, a is the constant for parameterizing the ex-
tent to which CCD influences verb sense disam-
biguation. The larger «, the stronger CCD’s in-
fluence on the system’s output. Our preliminary
experiment showed that the stronger influence we
allow CCD to have, the better performance we gain.

With regard to the computation of the similar-
ity between two different case fillers (sim(nc,e) in
equation (1)), there are two alternative approaches.
The first approach uses semantic resources, that
is, hand-crafted thesauri (such as the Roget’s the-
saurus [1] or WordNet [16] in the case of English,
and Bunruigoihyo [17) or EDR {3} in the case of
Japanese), based on the intuitively feasible assump-
tion that words located near each other within
the structure of a thesaurus have similar meaning.
Therefore, the similarity between two given words is
represented by the length of the path between them
in the thesaurus structure [12, 14, 21]. We used the
similarity function proposed by Kurohashi et al., in
which the relation between the length of the path
in the Bunruigothyo thesaurus and the similarity,
is defined as shown in ‘table 1. Figure 2 shows a
fragment of the Bunruigoihyo thesaurus including
some of the nouns in both figure 1 and the input
sentence above, with each word corresponding to a
leaf in the structure of the thesaurus. When nouns
are associated with multiple concepts, that is, they
are multiply located in the Bunruigoihyo thesaurus,
we determine the similarity between each combina-
tion of senses associated with the given nouns, and
take the maximal similarity (equation (3)).

i |€s:.c) + |€s;.cl — 2181, N Es;
[€si.cl + |Es;.cl

sim(ny,nz) = max sim(cy, c2) (3)
Here, ¢, and c; denote senses associated with nouns
ny and ng, respectively.

The second approach is based on statistical mod-
eling [2, 9, 20]. Here, each noun n is represented
by a vector comprising statistical co-occurrence fac-
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kane  (money)
suri (pickpocket) saifu  (wallet)
{ kanojo  (she) } ga otoko  (man) wo toru (to take/steal)
ani (brother) ume  (horse)
atdea (idea)
kare (he) menkyoshou  (license)
{ kanojo  (she) } ga { shikaku (qualification) } wo toru (to attain)
gakusei  (student) biza (visa)
kare (he) kippu ticket
dan;:ik aku ggii::rzéer) ga { h:;}:; groom)) } wo toru (to reserve)
o , ; . .
;g.shu y (assistant) hikouki  (airplane)

Figure 1: A fragment of the database, and the entry associated with the Japanese verb toru

Table 1: The relation between the length of the
path between two nouns n; and ny in the Bun-
ruigoihyo thesaurus (len(n;, n2)) and their similar-

ity (sim(ny,n3))

len(ny,n2) [0 2 4 6
sim(ny,n2) [12 11 10 9

Jjoshu (assistant)
___E hisho (secretary)

kanojo (her)

heya(room)
— kippu (ticket)

kane(money)

10 12 14
7 5 0

8
8

Figure 2: A fragment of the Bunruigoihyo thesaurus

tors, and as such, this model can be called a “vec-
tor space model” (VSM). This can be expressed by
equation (4), where 7 is the vector for the noun in
question, and ¢; is the co-occurrence statistics for n
and each co-occurring verb.

(4)

Co-occurrence data was extracted from the RWC
text base RWC-DB-TEXT-95-1 [18]. This text base
consists of 4 years worth of Mainichi Shimbun {19)
newspaper articles, which have been automatically
annotated with morphological tags. The total mor-
pheme content is about 100 million. Instead of con-
ducting full parsing on the text, several heuristics
were used in order to obtain dependencies between
complements (noun + case marker) and verbs in
the form of tuples <n,c,v>. In regard to t;, we
used the notion of TF-IDF [5], in which ¢; is calcu-
lated as in equation (5), where f(<n,c,v>) is the
frequency of the tuple <mn,c,v>, nf(<c,v>) is the
number of noun types which collocate with verb v
in the case ¢, and N is the number of noun types
within the overall co-occurrence data.

A=<ty ta, ..., t, ...>

f;:f(<n,c,v>)-logmv—>)- (5)

We then compute the similarity between nouns n¢
and e by the cosine of the angle between the two
vectors fi¢c and €. This is realized by equation (6).

-

Ne - €
AL (©)

sim(nc,e) =

Here, let us compare the following three methods

. of similarity computation:

o vector space model (VSM),
o use of the Bunruigoihyo thesaurus (BGH),
o use of the Bunruigothyo thesaurus, com-

bined with the notion of case contribution
(BGH+CCD)!. ’

The training/test data used in the experiment con-
tained about one thousand simple Japanese sen-
tences collected from news articles. Prior to the
core disambiguation process, morphological anal-
ysis, including lexical segmentation and part-of-
speech tagging, is needed because Japanese sen-
tences lack lexical segmentation. These process can
be automated through the use of existing NLP tools
such as JUMAN [15] (a morphological analyzer) and
QJP [11] (a morphological and syntactic analyzer).
However, to avoid the bias from incorrect analyses,
we manually executed these processes and identified
verbs and their complements. We also manually
annotated each verb with its correct sense, as de-
scribed in the machine readable Japanese dictionary
“IPAL” [10]. Each of the sentences in the train-
ing/test data contained one or more complement(s)
followed by one of the eleven verbs described in ta-
ble 2. In table 2, the column of “English gloss” de-
scribes typical English translations of the Japanese
verbs. The column of “# of sentences” denotes
the number of sentences in the corpus, and “# of
senses” denotes the number of verb senses contained
in IPAL.

!The influence of CCD, i.e. « in equation (2), was ex-
tremely large, so much so that the system virtually relied
solely on the similarity of the case with the greatest CCD.




Table 2: The verbs contained in the corpus used

# of # of

verb English gloss | sentences | senses
ateeru give 136 4
kakeru hang 160 29
kuwaeru add 167 5
motiomeru require 204 4
nory ride 126 10
osameru govern 108 8
tsukuru make 126 15
toru take 84 29
umuy bear offspring 90 2
wakaru understand 60 5
yameru stop 54 2

[ total — | 1315 — ]

For each of the eleven verbs, we conducted six-
fold cross validation; that is, we divided the train-
ing/test data into six equal parts, and conducted
six trials in each of which a different one of the
six parts was used as test data and the rest was
used as training data. We shall call the former the
“test set” and the latter the “training set”, in each
case. Figure 3 shows the results, in which the x-
axis denotes the number of the data used from the
training set. In figure 3, one can see that the use of
the Bunruigoihyo thesaurus combined with the no-
tion of CCD outperformed other methods. When
the whole training set was provided, the accura-
cies were roughly 83% (BGH+CCD), 79% (BGH)
and 78% (VSM). It is also important to estimate
the lower bound of the task: the accuracy gained
by using a naive method, in which the system, sys-
tematically chooses the most frequently appearing
interpretation in the training data [8). We found
that the lower bound was about 51%, meaning the
accuracy for any of the three similarity computa-
tion methods is greatly superior to this value. In
the following section, we enhance our system based
on the Bunruigoihyo thesaurus and its reliance on
the notion of CCD.

3 Certainty computation

Since, as shown in figure 3, our system still finds
it difficult to achieve a 100% accuracy, it is impor-
tant to select presumably correct outputs from the
overall outputs (potentially sacrificing system cov-
erage), for practical applications. To achieve this,
it is useful to estimate the degree of certainty as to
the interpretation, so that we can gain higher accu-
racy selecting only outputs with greater certainty
degree.

Lewis and Gale estimate the certainty of an in-
terpretation as the ratio between the probability of
the most plausible text category, and the probabil-
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Figure 3: the accuracy of each method, for each size
of training data

ity of any other text category, excluding the most
probable one [13]. Similarly, Fujii et al. proposed
the notion of interpretation certainty of examples
based on the following preference conditions [6):

1. the highest interpretation score is greater,
2. the difference between the highest and second
highest interpretation scores is greater.

The rationale for these conditions is given below.
Consider figures 4 and 5, where each symbol de-
notes an example in a given corpus, with symbols
z as unsupervised examples and symbols e as su-
pervised examples. The curved lines delimit the
semantic vicinities (extents) of the two verb senses
1 and 2, respectively. The semantic similarity be-
tween two examples is graphically portrayed by the
physical distance between the two symbols repre-
senting them. In figure 4, z’s located inside a se-
mantic vicinity are expected to be interpreted as
being similar to the example e which defines this
vicinity, with high certainty. This fact is in line
with condition 1 above. However, in figure 5, the
degree of certainty for the interpretation of any z
which is located inside the intersection of the two
semantic. vicinities cannot be great. This occurs
when the case fillers associated with two or more
verb senses are not selective enough to allow for a
clear cut delineation between them. This situation
is explicitly rejected by condition.2.

Based on the above two conditions, we compute
interpretation certainties using equation (7), where
C(z) is the interpretation certainty of an example
z. Scorei(z) and Scorey(r) are the highest and
second highest scores for z, respectively. A, which
ranges from 0 to 1, is a parametric constant used to
control the degree to which each condition affects
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b

Figure 4: The case where the interpretation cer-
tainty of the enclosed z's is great

sense 1

sense 2 x
x x
X
X
el ) e
x x\'x o
x

Figure 5: The case where the interpretation cer-
tainty of the z's contained in the intersection of
senses 1 and 2 is small

the computation of C(z).

C(z) = A-Scorey(z)+(1—2)-(Scorey (z)—Scorez(z))
(7)
We estimated the validity of the notion of inter-
pretation certainty through an experiment, in which
we used the same corpus as that used for the exper-
iment described in section 2. In this experiment, we
evaluated the relation between the applicability and
the accuracy of the system, given that the applica-
bility is the ratio between the number of cases where
the certainty of the system’s interpretation of the
outputs is above a certain threshold, and the num-
ber of inputs. By raising the value of the threshold,
the accuracy also increases (at least theoretically),
while the applicability decreases. Figure 6 shows
the result of the experiment with several values of
A, from which the optimal A value seems to be in
the range around 0.5. It can be seen that, as we
assumed, both of the above conditions are essential
for the estimation of the interpretation certainty,
and for example, we could achieve an accuracy of
93% with an applicability of 60%.

4 Minimizing the overhead

4.1 Overview

Our example sampling method, based on the util-
ity maximization principle, decides on the prefer-
ence for including a given example in the database.
This decision procedure is usually called selective
sampling. The overall control flow of selective sam-
pling systems can be depicted as in figure 7, where

100 T T

accuracy (%)

80 i 1 L
60 70 80 90 100
applicabllity (%)

Figure 6: The relation between applicability and
accuracy with different A’s

“system” refers to our verb sense disambiguation
system, and “examples” refers to an unsupervised
example set. The sampling process basically cy-
cles between the word sense disambiguation (WSD)
and training phases. During the WSD phase, the
system generates an interpretation for each polyse-
mous verb contained in the input example (“WSD
outputs”). This phase is equivalent to semantic-
based categorization as described in section 2. Dur-
ing the training phase, the system selects samples
for training from the previously produced outputs.
During this phase, a human expert supervises sam-
ples, that is, provides the correct interpretation for
the verbs appearing in the samples. Thereafter,
samples are contained in the database, meaning
that the system can be trained on the remaining ex-
amples (“residue”) for the next iteration. Iterating
these two phases, the system progressively enhances
the database. Note that the selective sampling pro-
cedure gives us an optimally informative database
of a given size irrespective of the stage at which
processing is terminated.

supervision

sampling

for next iteration

Figure 7. flow of control of the example sampling
system

Lewis and Gale proposed the notion of uncer-
tainty sampling for the training of statistics-based
text classifiers [13]. Their method selects those ex-
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amples that the system classifies with minimum
certainty, based on the assumption that there is
no need for teaching the system the correct an-
swer when it has answered with sufficiently high
certainty. However, we should take into account
the training effect a given example has on other re-
maining (unsupervised) examples. In other words,
we would like to select samples such as to be able to
correctly disambiguate as many examples as possi-
ble in the next iteration. If this is successfully done,
the number of examples requiring supervision will
decrease. We consider maximization of this effect
by means of a training utility function aimed at
ensuring that the example with the greatest train-
ing utility factor, is the most useful example at a
given point in time. Intuitively speaking, the train-
ing utility of an example is greater when we can ex-
pect greater increase in the interpretation certainty
of the remaining examples after training using that
example.

Let S be a set of sentences, i.e. a given corpus,
and D be the subset of supervised examples stored
in the database. Further, let X be the set of unsu-
pervised examples, realizing equation (8).

S=DuX (8)
The example sampling procedure can be illustrated
as:
1. WSD(D,X)

2. e — argmax,x TU(z)

3. De=Du{e}, X+~ Xn{e}
4. goto 1

where WSD(D, X) is the verb sense disambigua-
tion process on input X using D as the database.
In this disambiguation process, the system outputs
the following for each input: (a) a set of verb sense
candidates with interpretation scores, and (b) an
interpretation certainty. These factors are used for
the computation of TU(z), newly introduced in our
method. TU(z) computes the training utility fac-
tor for an example z. The sampling algorithm gives
preference to examples of maximum utility.

We will explain in the following sections how one
can estimate TU(z), based on the estimation of the
interpretation certainty.-

4.2 Training utility

The training utility of an example a is greater
than that of another example b when the total in-
terpretation certainty of unsupervised examples in-
creases more after training with example a than
with example b. Let us consider figures 8 and 9, in
which the x-axis mono-dimensionally denotes the

semantic similarity between two unsupervised ex-
amples, and the y-axis denotes the interpretation
certainty of each example. Let us compare the
training utility of examples a and b in figure 8.
Note that in this figure, whichever example we use
for training, the interpretation certainty for each
unsupervised example (z) neighboring the chosen
example increases based on its similarity to the su-
pervised example. Since the increase in the inter-
pretation certainty of a given z becomes smaller as
the similarity to a or b diminishes, the training util-
ity of the two examples can be represented by the
shaded areas. It is obvious that the training utility
of a is greater, as it has more neighbors than b. On
the other hand, in figure 9, b has more neighbors
than a. However, since b is semantically similar
to e, which is already contained in the database,
the total increase in interpretation certainty of its
neighbors, i.e. the training utility of 4, is smaller
than that of a.

certainty

X

Figure 8: The case where the training utility of a is
greater than that of b because a has more unsuper-
vised neighbors

certéinly

)
xXXxXxaxxzx «

xxxexbxxx

Figure 9: The case where the training utility of a
is greater than that of b because b closely neighbors
e, contained in the database

Let AC(z=s,y) be the difference in the interpre-
tation certainty of y € X after training with z € X,
taken with the sense s. TU(z=s), which is the
training utility function for z taken with sense s,
can be computed by way of equation (9)%.

TU(z=s) = Z AC(z=s,y)
veX

(9)

21t should be noted that in equation (9), we can replace X
with a smaller subset of X which consists of neighbors of z:
example y is a neighbor of z if they share the same supervised
example e as their nearest neighbor. Since the system deter-
mines e during the WSD phase, identifying the neighbors of
z does not require any extra computational overhead.
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Since there is no guarantee that z will be super-
vised with any given sense s, it can be risky to rely
solely on TU(z =s) for the computation of TU(z).
We estimate TU(z) by the expected value of z, cal-
culating the average of each TU(z=s), weighted
by the probability that z takes sense s. This can
be realized by equation (10), where P(z=3s) is the
probability that z takes sense s.

TU(z) = EP(:L‘:S) -TU(z=3) (10)
s

Given the fact that (a) P(z=s) is difficult to esti-
mate in the current formulation, and (b) the cost
of computation for each TU(z=s) is not trivial,
we temporarily approximate TU(z) as in equa-
tion (11), where K is a.set of the k-best verb
sense(s)-of z with respect to the interpretation score
in the current state.

TU(z) :% 3 TU(z=9) (1)
seK

4.3 Experimentation .

In this experiment, we compared the following
four example sampling methods:

1. a control (random), in which a certain propor-
tion of a given corpus is randomly selected for
training,

2. uncertainty sampling (US), in which examples
with minimum interpretation certainty are se-
lected [13], _

3. committee-based sampling (CBS) [4],

4. our method based on the notion of training util-
ity (TU).

In committee-based sampling, the system selects
samples based on the degree of disagreement be-
tween models randomly taken from a given set of
supervised examples (these models are called “com-
mittee members”). This is achieved by the itera-
tively repeating the steps given below, in which the
number of committees is given as two without loss
of generality®:

1. draw two models randomly,

2. classify unsupervised example z according to
each model, producing classifications C; and
C21

3. if Cy # C; (the committee members disagree),
select z for the training of the system.

Note that the méthod of “random” is equivalent
to the method labeled as “BGH+CCD?” in the ex-
periment in section 2. We compared these sam-
pling methods by evaluating the relation between

3Engelson and Dagan applied this framework to HMM
training for part-of-speech tagging [4].

the number of training examples and the perfor-
mance of the system. We conducted six-fold cross
validation and carried out sampling on the training
set. During the initial phase, each sampling method
randomly selected one example (“seed”) for each
verb sense from the training set, and a human ex-
pert provided the correct interpretation to initialize
the system. We used the same corpus as that used
for the experiment described in section 2.

We evaluated each system’s performance accord-
ing to its accuracy, that is the ratio of the number
of correct outputs, compared to the total number
of inputs. For the purpose of this experiment, we
set A = 0.5 for equation (7), and k=1 for equa-
tion (11). Based on a preliminary experiment, in-
creasing the value of k either did not improve the
performance over that for k =1, or lowered the
overall performance. Figure 10 shows the relation
between the size of the training data and the accu-
racy of the system. In figure 10, zero on the x-axis
represents the system using only the seeds. Look-
ing at figure 10 one can see that (a) our sampling
method outperformed other methods, and (b) com-
pared with random sampling, our sampling method
reduced the size of the training data required to
achieve any given accuracy. For example, to achieve
an accuracy of 80%, the size of the training data re-
quired for our method was roughly half of that for
random sampling. Through this comparative ex-
periment, we can conclude that.our example sam-
pling method is able to decrease the size of the train-
ing data, i.e. the overhead for both supervision and
searching, without degrading the system’s perfor-
mance.
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Figure 10: The relation between the number of
training data sampled and accuracy of the system
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5 Conclusion

Let us summarize the main points that have been
made in this paper.

Evaluation of semantic-based sentence cat-
egorization Each sentence is categorized based
on the semantic similarity between examples in
the database. To compute semantic similarity, we
tested two approaches: use of a hand-crafted the-
saurus (Bunruigoihyo) and a statistical model. We
also introduced the notion of case contribution to
disambiguation (CCD) in the similarity computa-
tion. The result of our experiments showed that
use of the thesaurus combined with the notion of
CCD improved on the accuracy of categorization
for the statistical model (from 78% to 83%).

Introduction of interpretation certainty To
achieve higher accuracy, we selected presumably
correct outputs from the overall categorized out-
puts by use of the notion of interpretation certainty.
While sacrificing system coverage from 100% to
60%, the accuracy was improved from 83% to 93%.

Minimization of the overhead As with most
categorization methods, our framework assumes
a certain amount of supervised examples in the
database, and therefore the overhead for supervi-
sion of examples and the overhead for searching the
database are crucial problems. However, our sam-
pling method is effective in selecting a smaller-sized
example set for system usage, without degrading
the overall performance. Compared with random
sampling, our sampling method reduce the size of
the database by roughly half, in achieving an_accu-
racy of 83%.
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