Empirical Evaluation of Probabilistic GLR Parsing

Virach Sornlertlamvanich, Kentaro Inui, Kiyoaki Shirai, Hozumi Tanaka,
Takenobu Tokunaga
{virach,inui,kshirai,tanaka,take}@cs.titech.ac.jp
Department of Computer Science, Tokyo Institute of Technology
2-12-1, Oookayama, Meguro-ku, Tokyo 152
and Toshiyuki Takezawa
ATR Interpreting Telecommunications Research Laboratories
takezawa@itl.atr.co.jp

Abstract

This paper presents the results of experiments
on probabilistic GLR (PGLR), a new probabilis-
tic model proposed by (Inui et al., 1997). The
model is formalized based on stack transition
during parsing distinguishing it from the exist-
ing models proposed by Wright and Wrigley, and
Briscoe and Carroll. Our model produces a re-
markable improvement in syntactic parsing with
probability. Associating probabilities directly to
actions in an LR parsing table, and theoretically
requiring only one probability for each action
guarantee model trainability and potential ap-
plications to other related tasks.

1 Introduction

Probabilistic techniques have been introduced to various
kinds of natural language processing tasks, due to the in-
creasing availability of text corpora. In syntactical pars-
ing, probabilistic techniques are utilized to rank the po-
tentially high numbers of parses generated for natural lan-
guage (NL) applications.

Several attempts have been made to prune meaningless
parses and aid in the selection of the most likely parse from
multiple parse candidates. Fujisaki et al. (Fujisaki et al.,
1989) introduced the notion of a probabilistic context-free
grammar (PCFG), with probabilities trained in the For-
ward/Backward manner. Wright and Wrigley (Wright and
Wrigley, 1991) formalized a method of mapping PCFGs
onto LR parsing tables (LR tables, for short) by way of
distributing the probabilities originally associated with a
given CFG to each corresponding LR parsing action. As
a result, the parser can incrementally compute the prob-
Nevertheless, under Wright and
Wrigley’s model the resultant probability of a parse is iden-
tical to that acquired from the original PCFG, despite the
process of generating the LR table being greatly compli-

ability of each parse.

cated.

Briscoe and Carroll (Briscoe and Carroll, 1993) pro-
posed a simpler way of incorporating trained probabilities
Probabilities
are computed directly from the frequency of application

into each parsing action of the LR table.

of each action when parsing the training corpus. Their
method seems to be able to exploit the advantages offered
by the context-sensitivity of GLR parsing. GLR parsing
is, indeed, context-sensitive in that reduce actions depend
on the state and lookahead symbol. But, without the ob-
vious formalization of their model, there is doubt as to the
validity of their method of including the left context for
reduce actions in an attempt to increase the accuracy of
computation of parse probability.

In contrast to the former models proposed by Wright
and Wrigley, and Briscoe and Carroll, our PGLR model is
formalized according to stack transition during the pars-
ing process. Parse probability is decomposed into a se-
quence of actions. Theoretically, our model requires only
one probability for each action. Therefore, we can easily
train our model by computing the frequency of application
of each action when parsing the training corpus (correctly
hand-annotated corpus), and directly associate a proba-
bility with each action in the LR table. The results of our
experiments clearly show that our model outperforms the
other two in all cases, and significantly reduces the per-
word cross entropy of the task compared with the baseline

model of PCFG.

Section 2 briefly reviews the probabilistic models pro-
posed on GLR parsing, namely PCFG model, the model
proposed by Briscoe and Carroll, and our PGLR model.
We then clarify the context-sensitive nature of GLR pars-
ing, and point out the dubious nature of Briscoe and Car-
roll’s model in Section 3. Section 4 describes how a prob-
ability is allocated to each action of the table, through a
simple example. Section 5 shows the results of experiments
made on the three models.

2 Probabilistic Models in GLR
Parsing

GLR parsing algorithm is associated with effective devices
for handling nondeterminism in parsing, namely a graph-
structured stack, and packed shared parse forest for rep-
resenting numerous parse derivations in a space-efficient
manner (Tomita and Ng, 1991). Inheriting the efficiency
of GLR parsing is one of the common purposes in integrat-
ing probability into the parser. In this section, we briefly
describe the existing probabilistic models, together with
our newly proposed PGLR model.

Probabilistic Context-Free Grammar (PCFG)
A probabilistic context-free grammar (PCFG) is an aug-
mentation of a context-free grammar. Each production
rule of the grammar (7;) is of the form < A — «, P(r;) >
where P(r;) is the associated probability, and the proba-
bilities associated with all rules with a given nonterminal
on the LHS must sum to one (Fujisaki et al., 1989; Wright
and Wrigley, 1991). The probability of a parse derivation
(T) is regarded as the product of probabilities of the rules
which are employed for deriving that parse derivation, such

that,
> P(al4)

P(T) =

I
=

(1)

[17e (2)

Wright and Wrigley proposed a solution of integrating
PCFG into the GLR parsing scheme (Wright and Wrigley,
1991). They distributed the original probabilities of the
PCFG into the parsing action table by way of the parser
generator. The successful application of their probabilis-
tic LR table generator made a contribution in making
word prediction available in the speech recognition pro-
cess. With probabilities associated with shift actions as
well as reduce actions, the parser can compute not only
the total probability of a parse derivation but also the in-
termediate probability during the parse process. However,
the resultant probability is identical to the original PCFG,
which does not sufficiently capture the context-sensitivity

of NL.

Briscoe and Carroll’s Model (B&C) (Briscoe
and Carroll, 1993) introduced probability to the GLR
parsing algorithm in the light of the fact that LR tables
do provide appropriate contextual information for solving
the context-sensitivity problems observable in real world
NL applications. They pointed out that an LR parse state
encodes information about the left and right context of the
parse. This results in distinguishability of context for an
identical rule reapplied in different ways across different
derivations. Briscoe and Carroll’s method allows us to as-
sociate probabilities with an LR table directly, rather than
simply with the rules of the grammar. They considered

the LR table as a nondeterministic finite-state automa-
ton. Each row of the LR table corresponds to the possible
transitions out of the state represented by that row, and
each transition is associated with a particular lookahead
item" and a parsing action. Nondeterminism arises when
more than one action is possible given a particular input
symbol.

Briscoe and Carroll regard a parse derivation as a se-
quence of state transitions (7'):-

l1,a3 la,a2
Sg — 81 =— ...

In—1,an-1 a
- . — n,qn
—n

l
Spn—1 —> Sn (3)
where a; is an action, /; is an input symbol and s; is the
state at time ¢;. The probability of the parse derivation T'
is estimated by equation (4):-

Q

P(T) HP(liyai75i|3i—1)
=1

I P ailsizr) - Psilsir, liyas) — (4)
i=1

Based on Briscoe and Carroll’s model, the following is

a summary of the scheme for deriving the action proba-
bilities from the count of state transitions resulting from
parsing a training set.

1. The probability of an action given an input symbol
is conditioned by the state it originated from. The
probabilities assigned to each action at a given state
must sum to one. Therefore, the probability of an
action (p(a)) is:-

pla) = P(li,ailsi-1) (5)
such that:

Z Z pla)=1 (forVseS) (6)

l€La(s)a€EAct(s,l)

where La(s) is the set of input symbols at state s,
Act(s,l) is the set of actions given a pair of state s
and input symbol [, and S is the set of all states of
the LR table.

2. In the case of a reduce action, the probability is sub-
divided according to the state reached after applying
the reduce action. The reason for this is that Briscoe
and Carroll considered associating probabilities with
transitions in the automaton rather than with actions
in the action part of the LR table.

The probability of a parse derivation is the product
of the probabilities of the actions for state transitions
through the whole parse derivation:-

n
P(T) =[] pla:) (M)
i=1

IThe term “lookahead” originally used in (Aho et al., 1986)
refers to the extra information that is incorporated into the
state by redefining items to include a terminal symbol as a

second component. In this case, however, Briscoe and Carroll
refer to an “input symbol”.

Probabilistic Generalized LR (PGLR)
et al., 1997) have recently proposed a new formalization
of a probabilistic model for GLR parsing. Unlike B&C, a
parse derivation is regarded as a sequence of transitions

(Inui

between LR parse stacks (T) as shown in equation (8),
where o; is the stack at time t¢;, a; is an action and [; is
an input symbol. Equations (3) and (8) show the inherent
difference in the definition of parse derivation used in the
two models.

li,a3 la,an
o) —> 0] — ...

ln—1,an— Ly ,ag,
e, 2, (8)
Based on the above definition, the probability of a com-
plete stack transition sequence T' can be represented with
equation (9), by assuming that o; contains all the infor-
mation of its preceding parse derivation:-

P(T) HP(liyaho'iIO'i—l)
i—1

[1 P ailoizr) - Ploilois, liyas) (9)
i=1

Due to the two different types of actions in the LR ta-
ble, namely shift and reduce actions (acceptis an additional
special dummy action to successfully end the parsing pro-
cess), states are treated differently according to the type
of action applied to reach that state. States reached after
the application of a reduce action occupy the same input
symbol as in the former state, whereas states reached af-
ter the application of a shift action read in a new input
symbol. As a result, we classify states into two classes
and estimate the probabilities of actions differently, corre-
sponding to the class they belong to. By assuming that
the stack-top state contains sufficient information of the
current stack, we can estimate the probability of the cur-
rent action a; from the state s; on top of the current stack,
instead of the full stack o;. Therefore,

(liyailsi—1) (si-1 € Ss)

(aifsior, i) (sia €5,y D)

P
P(li,a,‘,UZ‘|0’,‘71) ~ {P

such that:

Z Zp(a)Zl

l€La(s) a€Act(s,l)

Y pa) =1

a€Act(s,l)

(for s € Ss) (11)
(for s € S.) (12)

where P(a) is the probability of an action, S, is the class
of states reached after applying a shift action, including
the initial state, and Sr is the class of states reached after
applying a reduce action.

3 Context-Sensitivity in GLR Parsing

GLR parsers (Tomita and Ng, 1991) are driven by a pre-
compiled LR table, generated from a context-free gram-
mar. Though the grammar used in generating the table
is context-free, the nature of the table and the manner in

which the GLR parser is driven, make the parser mildly
context sensitive. Briscoe and Carroll raised this issue in
(Briscoe and Carroll, 1993) but misinterpreted some as-
pects of the context sensitivity, causing the number of free
parameters to increase unnecessarily and resulting in on
We will

come back to this point after describing the nature of

unexpectedly complicated probabilistic model.

context-sensitivity of GLR parsing.

In the generation of an LR table, each state in the ta-
ble is generated by applying the goto function, (as de-
scribed in (Aho et al.; 1986)), to the previous state (s; =
goto[si—1, X;]).
sulting the previous state (s;—1) and a grammar symbol

Each new state (s;) is generated by con-

(X;), where X; is a terminal symbol in the case of the
next input symbol being incorporated onto the stack, or a
non-terminal symbol when the stack is reduced by way of
an appropriate reduction rule. Each state in the LR table
thus contains a local left context for the parser.

On the other hand, at parse time, actions in the LR
table are determined by the pair of a state and an input
symbol (a;41 = action[s;,l;41]). This means that at time
t;, when the parser has come to a state (s;), the parser will
consider the next input symbol (I;4+1) in determining the
next action (a;+1). The next input symbol here provides
the parser with a right context to aid in the determination
process. Basically, the context taken into account during
parsing is limited to one viable state and one input symbol.

In parsing natural language, ambiguity inevitably oc-
curs for a fixed state and input symbol. Based on GLR
parsing, ambiguity occurs when there is more than one
action corresponding to the given pair of state and input
symbol. Two cases exist for potential action conflicts: re-
duce/reduce conflicts (Figure 1) and shift /reduce conflicts
(Figures 2 and 3). Due to the properties of LR tables,
shift /shift conflicts never occur.

Xa/Xb

o o0 b X ¢
Si

Figure 1: Reduce/reduce conflict

Let us consider the case of parsing with a grammar
which constructs a binary tree. Reduce/reduce conflicts
represent the dilemma of deciding which non-terminal la-
bel should be associated with the structure (for instance,
Xq or X3 in Figure 1), and shift/reduce conflicts constitute
the problem of deciding whether to incorporate the next
input symbol (d) onto the stack and delay construction
of hierarchical structure to the next step (see Figure 2)
or to create a structure based on the previous stack (see
Figure 3). In the case of parsing with PCFG, the most
we can do is to assign a probability to each rule, based
on the premise that the probabilities for all the rules that
expand a common non-terminal must sum to one. Disam-
biguation in the case of Figure 1 is then made based on
the comparison between the probabilities for [X, — a b]

and [X, — a b]. This same methodology is also used to
disambiguate between Figures 2 and 3.

For both conflict types, the GLR parser at least pro-
vides the left/right context to distinguish probabilities for
reducing to the same non-terminal. The overall probabil-
ity for reducing to X, may be higher than to X, but in
some context, such as Figure 1, the probability for reduc-
ing to X, can be higher than for X,. The GLR parser
provides the context of the state number (s;) and input
symbol (c) to determine parse preference. Similarly, the
context of state number (s;) and input symbol (d) in Fig-
ures 2 and 3 can be used to give preference to either a shift
or reduce action.

Xa L lxb
e a b D c X a Vie
- -
Si shift

Figure 2: Shift preference for a shift/reduce conflict

Lol Xd

Xa \\‘
\\\\ &ducc
oo a b D ¢ @ d
Si

Figure 3: Reduce preference for a shift /reduce conflict

Briscoe and Carroll have pointed out some examples
of NL phenomena that a GLR parser can inherently han-
dle (Briscoe and Carroll, 1993). In the example of he loves
her, a GLR parser can distinguish between the contexts
for reducing the first pronoun and the second pronoun to
NP, given that the next input symbol after he is loves,
while that for her is the sentence end marker ($). How-
ever this does not work if the next input symbols are the
same, such as the reduction of pronouns in the examples
of he passionately loves her and he loves her passionately.
As previously mentioned, Briscoe and Carroll proposed an
approach of subdividing reduce actions according to the
state reached after that reduce action is applied. The pur-
pose of this approach is to distinguish between reductions
using the left context of the reduction rule.

Subdividing reduce actions according to the state
reached after the reduce action is one of the factors that
leads to Briscoe and Carroll’s model being unexpectedly
complicated and including an unnecessarily large number
of free parameters.

As we have described above regarding the left context
of the GLR parsing scheme, every state is generated by
consulting the previous state and a grammar symbol. The
states contain some local context, with the degree of the
context depending directly on the type of the table, namely
SLR, LALR or CLR (see (Aho et al., 1986)). Furthermore,

the states reached after reduce actions (for instance, s; and

sz in Figure 4) are determined deterministically. This is
accounted for in our probabilistic modeling in Section 2.

Xa Xa

. a® be® & o oo . a® b® X

Si Sj Sk Sx Sy Sz
(a) (b)
Figure 4: Reduction of [X, — a b] in different contexts

The context sensitivity when parsing with either an
LALR or CLR table is different, because during the pro-
cess of generating an LALR table, states are merged to-
gether if they fulfill the requirement of have the same core
in the LR item (Aho et al., 1986). As a result, the number
of states in an LALR table is drastically decreased when
compared a CLR table. Therefore, the left context con-
tained in states in an LALR table is less than that for
states in a CLR table. Despite this, however, the results
of an experiment presented in Section 5 confirm that pars-
ing with an LALR table does not significantly decrease
accuracy.

4 Incorporating Probability into an
LR Parsing Table

Our model described in Section 2 normalizes the probabil-
ity differently depending on the class of the state, either S,
or S,. States are distinguishable because of the property
that the state classes for an LR table are mutually exclu-
sive. This is because any state can be reached by only one
type of grammar symbol. The states in the S, class are
those states referenced by transitions in the goto part of
the table, and all other states are in the S, class.

Suppose that we have a simple English context-free
grammar as shown in Table 1, with LR table as shown
in Table 2. We train our GLR parser in the supervised
mode, using a correctly hand-annotated corpus to guide
the parser in its extraction of the sequence of actions re-
quired to produce the correct parse. We sum the frequency
of application of each action, and add a part of a count
to each action that appears in the table, to smooth the
probability for unobserved events. Finally, each action
probability is computed according to the state class which
the action belongs to.

Table 3 shows the artificial probability associated with
each action. It is noticeable that the probabilities of ac-
tions in states in the S, class (states 0, 1, 2, 4, 5, and 6)
sum to one, but for states in the S, class (states 3, 7, 8, 9,
10, 11 and 12), the probabilities of the actions in the slot
of state and the input symbol sum to one. Table 3 does
not show the goto part because actions in the goto part
are deterministic and their probabilities are always one.

5 Experiments

We tested our model (PGLR) on two Japanese corpora.
These two corpora were different in both their sources and

Table 1: A simple English context-free grammar

(1) S — NP VP
(2) NP — det n
(3) NP — n

(4) NP — NP PP
(5) PP — p NP
(6) VP - v NP
(1) VP — VP PP

Table 2: LR table for the English grammar in Table 1

Action Goto
State [det n b v 5 NP | DD S N
0 =2 o1 3 12
1 13 13 3
2 s4
3 . <6 7 8
4 2 2 2
5 2 s1 9
6 2 s1 10
7 14 r4 r4
8 s5 1 11
9 v5/s5 | 15 5 7
10 r6/s5 16 7
11 7 7
12 acc
Table 3: LR table with its associated probabilities
Action
State | det n P v 3
0 s2 sl
0.6 0.4
1 r3 r3 r3
0.4 0.5 0.1
2 s4
1
3 sb s6
1 1
4 r2 r2 r2
0.3 0.6 0.1
5 s2 sl
0.7 0.3
6 s2 sl
0.7 0.3
7 r4 r4 rd
1 1 1
8 sb rl
1 1
9 r5/sh r5 r5
0.7/03 | 1 1
10 r6/sb r6
0.4/0.6 1
11 r7 r7
1 1
12 acc
1

their licensed context-free grammar, but about the same
size. Our experiments are designed not to be biased to-
wards our model in terms of the degree of complexity of
the task. For comparison of the performance of the dif-
ferent models, we conducted tests with the PCFG model
as the baseline, and also with Briscoe and Carroll’s model

(B&C).

5.1 ATR Corpus and Grammar

The ATR corpus is a tree bank (a collection of trees an-
notated with a syntactic analysis, or “trees” for short) of
Japanese dialogue. We randomly selected about 5% of
the corpus to use as the test set and trained each parsing
model with the remaining approximately 20,000 trees (see
Table 4). The smallest sentence unit is a Japanese mor-
pheme, and the length shown in the Table 4 is the num-
ber of morphemes. All trees are licensed by the Japanese

phrase structure grammar developed at ATR. We gener-
ated an LALR table from the grammar of 360 production
rules, comprised of 67 non-terminal symbols and 41 ter-
minal symbols. 376 states were generated in the LALR
table.

Table 4: ATR Corpus

of Morphemes
ATR Corpus | # of Sent. Ave. Range
Training set 19,586 | 12.08 2-60
Test set 995 | 11.64 2-30

5.2 Parsing the ATR Corpus

In the test, we used the test set to generate a sequence of
parts-of-speech for each sentence, to act as the input for
each model. The evaluation data for each model is shown
as the percentage of ranked candidate parses containing an
exact match to the standard parse. Candidate parses were
ranked based on the value of the parse probability. Table 5
shows the percentage of the exact matches in 4 classes.
“Exact-1" is the percentage of most probable candidate
parses that matched the standard parse. “Exact-5” is the
percentage of parse outputs containing an exact matched
parse ranked within top 5 parses and so on. To make sure
that the models can rank their output parses accurately,
we count the rank of the lowest parse for parses of the

same probability.
Table 5: Performance on the ATR Corpus

Rank PCFG B&C | PGLR
Exact-1 69.35% | 74.67% | 83.22%
Exact-5 91.56% | 89.056% | 95.48%
Exact-10 94.97% | 92.26% | 97.49%
Exact-20 96.78% | 95.08% | 98.59%
Cross Entropy 2.72 N/A 2.41

Our model (PGLR) outperformed the other two models
in every ranking class, and the per-word cross entropy is
also less than that for the PCFG model.
cross entropy of Briscoe and Carroll’s model (B&C) is out

The per-word

of range because of the large number of free parameters
used to re-predict the next input symbol after applying a
reduce action. Our model returning the highest parsing
accuracies and the lowest per-word cross entropy, clearly
shows that it can efficiently use the context information

encoded in the GLR parsing scheme.

5.3 EDR Corpus and Grammar

In a similar way, we prepared another testing environment
using the EDR corpus, an entirely different type of corpus.
The EDR corpus is a collection of Japanese documents ex-
tracted from various newspaper sources, with the size of
the corpus given in Table 6. From the corpus, we selected
data which could be constructed by a set of binary produc-
tion rules, for the purpose of testing the distinguishability
of the phrase dependency of each model.

Table 6: EDR Corpus

of Bunsetsu
EDR Corpus | # of Sent. | Ave. Range
Training set 21,602 | 8.24 2-26
Test set 993 | 8.11 3-20

The grammar is a set of production rules modeling inter-
phrasal structure, consisting of 1,132 binary rules. The
smallest sentence unit is the case-marked phrase (bun-
setsu). From the grammar, we generated an LALR table
consisting of 67 non-terminal symbols, 99 terminal sym-
bols and 1,608 states.

5.4 Parsing the EDR Corpus

Though the complexity of the sentence structure increased
for the EDR corpus and most parts of the structure
were constructed differently depending on the context, our
model still outperformed the other two models, (see Ta-
ble 7). The complexity of the task can be ascertained from
the per-word cross entropy, which is higher for the EDR
test set than for the ATR test set.

Table 7: Performance on the EDR Corpus

Rank PCFG B&C | PGLR
Exact-1 41.39% | 50.35% | 60.22%
Exact-5 78.85% | 80.87% | 89.73%
Exact-10 86.51% | 89.43% | 94.86%
Exact-20 91.84% | 92.95% | 96.68%
Cross Entropy 2.94 N/A 2.80

5.5 Additional Experiment with CLR Table

We extended our experiment on the ATR corpus to use a
CLR table, which is more distinctive in state assignment.
The experiment was repeated for both Briscoe and Car-
roll’s model and our PGLR model (note that the result
for the PCFG model does not change for different table
types). The CLR table occupied 814 states, more than
twice the number of states in the corresponding LALR
table. The overall performance using the CLR table was
slightly higher than that for the LALR table, and the per-
word entropy for the CLR table was also slightly less than
that for the LALR table (see Table 8). States in a CLR ta-
ble are more distinguishable than those in an LALR table,
but the drastic increase in states for the CLR table causes
data sparseness in training. Thus, whereas we would ex-
pect the predictability for a CLR table to be higher than
that for an LALR table, LALR tables perform similarly to
CLR tables given the same size of training data. Consid-
ering the cost of table generation and parsing time, using
an LALR table is much more efficient.

6 Conclusion

We formalized a probabilistic model for GLR parsing and
applied the method to the construction of a probabilistic
LR table. The results of experiments clearly showed that

Table 8: Performance on the ATR Corpus

B&C PGLR
Rank LALR CLR LALR CLR
Exact-1 74.67% | 74.87% 83.22% | 83.82%
Exact-5 89.05% | 87.24% 95.48% | 95.78%
Exact-10 92.26% | 91.36% 97.49% | 97.49%
Exact-20 95.08% | 94.47% 98.59% | 98.39%
Cross Entropy N/A N/A 2.41 2.32

our model (PGLR) is able to make effective use of both
left and right context information within the GLR parsing
scheme. As a result, our model outperformed both Briscoe
and Carroll’s model and the PCFG model in all tests. In
addition, our model needs only the probability for each
action in the LR table to compute the overall probabil-
ity of each parse. It is thus tractable to training with the
smallest amount of free parameters, and associates a prob-
ability directly to each action. Since the parse probability
is incrementally calculated from action probabilities, the
parser can compute the partial parse probability at any
stage of the parse. We plan to extend the PGLR model to
the parsing of sentences including unknown words, using
the predictability of the model. The PGLR model is also
expected to provide a means for recovering from ill-formed

input sentences.

7 Acknowledgments

We would like to thank Masahiro Ueki for support in using
MSLR and kindly adapting his parser to be able to accu-
mulate action counts during the training phase. Taiichi
Hashimoto helped us to improve the probabilistic parser,
and Toshiki Ayabe helped with LR table generation, es-
pecially in computing the state list for use with the B&C
model. In addition, Thanaruk Theeramunkong of JAIST
provided helpful discussions on accumulating probabilities
into a GLR packed shared parse forest.

References

Aho, A., Sethi, R. and Ullman, J. 1986. Compilers: Principles,
Techniques, and Tools. Addison-Wesley.

Briscoe, T. and Carroll, J. 1993. Generalized Probabilistic
LR Parsing of Natural Language (Corpora) with Unification-
Based Grammars. Computational Linguistics, Vol.19, No.1,
pages 25-59.

Fujisaki, T., Jelinek, F., Cocke, J., Black, E. and Nishino, T.
1989. A Probabilistic Parsing Method for Sentence Dis-
ambiguation. Proceedings of 1st International Workshop
on Parsing Technologies, Carnegie-Mellon University, Pitts-
burgh, PA, pages 85-94.

Inui, K., Sornlertlamvanich, V., Tanaka, H. and Tokunaga, T.
1997. A New Formalization of Probabilistic GLR Parsing.
Proceedings of the 5th International Workshop on Parsing
Technologies.

Tomita, M. and Ng, S-K 1991. The Generalized LR Parsing
Algorithm. Generalized LR Parsing, edited by Tomita, M.,
Kluwer Academic Publishers, pages 1-16.

Wright, J. H. and Wrigley, E. N. 1991. GLR Parsing with
Probability. Generalized LR Parsing, edited by Tomita, M.,
Kluwer Academic Publishers, pages 113-128.

