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Abstract

This paper discusses the effectiveness
of a new probabilistic generalized LR
model (PGLR) in word-based parsing
(morphological and syntactic analysis)
tasks, in which we have to consid-
er the word segmentation and multi-
ple part-of-speech problems. Parsing a
sentence from the morphological level
makes the task much more complex be-
cause of the increase of parse ambigu-
ity stemming from word segmentation
ambiguities and multiple corresponding
sequences of parts-of-speech. The ex-
periments show that the PGLR model
yields the best results comparing with
the existing Briscoe and Carroll model
(B&C) for GLR parsing, and “two-level
PCFG”, on experimentation on the ATR
Japanese corpus.

1 Introduction

The PGLR model (Inui et al., 1997) has pre-
viously been proven better than the exist-
ing models, namely the model proposed by
Briscoe and Carroll (1993) and the baseline mod-
el using a probabilistic context-free grammar
(PCFQG), in parsing strings of parts-of-speech (non-
word-based parsing) (Sornlertlamvanich et al.,
1997). Parsing a sentence from the morphologi-
cal level makes the task much more complex be-
cause of the increase of parse ambiguity stemming
from word segmentation ambiguities and multi-
ple corresponding sequences of parts-of-speech. In
this paper, we empirically evaluate the precise-
ness of a probabilistic model for PGLR against

one for Briscoe and Carroll’s model (B&C), which
is based on the same GLR parsing framework.
We also examine the benefits of context-sensitivity
in GLR parsing, of the PGLR model against the
“two-level PCFG” model (Chitrao and Grishman,
1990) or “pseudo context-sensitive grammar” mod-
el (PCSG)—recently presented in (Charniak and
Carroll, 1994)—which has been shown to capture
greater context-sensitivity than the original PCFG
model, by empirical results and qualitative analy-
sis.

Sornlertlamvanich et al. (1997)  demonstrat-
ed the superior performance of PGLR over B&C
and PCFG in a syntactic analysis task involving a
determined sequence of parts-of-speech as input—
non-word-based parsing. Most syntactic parsing
model evaluation takes a string of parts-of-speech
as input and leaves the problems of word segmen-
tation and part-of-speech determination to other
morphological analysis modules, such as part-of-
speech taggers. Since GLR parsing has the abili-
ty to integrate morphological and syntactic anal-
ysis (Tanaka et al., 1996), we can easily realize
PGLR parsing for morphosyntactic analysis, by
adding lexical probabilities. To prove that the lo-
cal n-gram constraints in PGLR are effective in
morphological parsing, we conducted a word-based
experiment on the ATR Japanese corpus, and com-
pared the resulting performance with the existing
B&C model and two-level PCFG, an extension of
PCFG which is claimed to yield a significant per-
formance advantage over the original PCFG frame-
work. Since no spaces are placed between words in
Japanese sentences, the models can in this way be
evaluated in terms of both morphological and syn-
tactic analysis.

Section 2 briefly reviews the various probabilis-



tic models, namely B&C, two-level PCFG and
PGLR, which are evaluated through word-based
parsing on the ATR Japanese corpus. Section 3
shows the results of experiments carried out on the
three models and the baseline model of PCFG. We
discuss the empirical results and give case analyses
in Section 4.

2 Probabilistic Models

In this section, we briefly describe the exist-
ing probabilistic models, namely B&C and two-
level PCFG, which are to be evaluated against
the PGLR model. B&C is a probabilistic mod-
el proposed for the GLR parsing framework and
has a significantly high performance, as present-
ed in (Briscoe and Carroll, 1993). Two-level
PCFG is an extended PCFG model for yield-
ing greater context-sensitivity than the original
paradigm. It was recently explored more thor-
oughly by Charniak and Carroll (1994), using the
terminology “pseudo context-sensitive grammar”
(PCSG), showing the improvement in per-word
cross-entropy over the original PCFG model. Our
motivation in selecting B&C and two-level PCFG
for the comparative evaluation of PGLR is to
examine the effectiveness of LR table context-
sensitivity (global context over CFG-derived struc-
tures and local n-gram context from adjoining pre-
terminal constraints), and the appropriateness of
PGLR for GLR parsing.

In word-based parsing, given a string of char-
acters C' = ¢q,...,¢, as an input, the joint prob-
ability of parse tree (T') and word sequence (W)
is:

P(T)-P(W|T)- P(C|W,T)

P(T,W|C) = PO) (1)
P(T)- P(WI|T) (2)

The term P(C|W,T) becomes one when word se-
quence W is determined, and P(C) is a constant
scaling factor, independent of 7" and W, which is
not worthy of consideration in ranking parse trees

Q

and word sequences.

Probabilistic models allow us to estimate parse
tree probabilities (P(T")). For the lexical probabil-
ity P(W|T), in our evaluation, we naively assume
that word w; in word sequence W = wq,...,wy,
depends only on its part-of-speech (;). Therefore,

P(W|T) ~ H P(w;ll;) (3)

The estimation of lexical probability is applied i-
dentically in all models.

2.1 Briscoe and Carroll’s Model (B€C)

Briscoe and Carroll (1993) introduced probability
to the GLR parsing algorithm in the light of the
fact that LR tables do provide appropriate contex-
tual information for solving the context-sensitivity
problems observable in real world NL applications.
They pointed out that an LR parse state encodes
information about the left and right context of the
parse. This results in distinguishability of contex-
t for an identical rule reapplied in different ways
across different derivations. Briscoe and Carroll’s
method allows us to associate probabilities with
an LR table directly, rather than simply with the
rules of the grammar.

They consider the LR table as a nondetermin-
istic finite-state automaton. Each row of the LR
table corresponds to the possible transitions out of
the state represented by that row, and each transi-
tion is associated with a particular lookahead item
and a parsing action. Nondeterminism arises when
more than one action is possible given a particular
input symbol. The following is a review of B&C in
terms of our formalization.

Briscoe and Carroll regard a parse derivation as
a sequence of state transitions (7'):-

l1,a3 l2,az ln—1,an-1

S = §] = ... Sp—1 e Sn, (4)

where a; is an action, /; is an input symbol and s;
is the state at time ¢;. The probability of the parse
derivation T is estimated by equation (5):-

P(T)

Q

11 P, ai,silsi1)
=1

= HP(li,ai|s,~_1) : P(3i|5i—1;liaai)(5)
i=1

Based on B&C, the following is a summary of
the scheme for deriving the action probabilities
(p(a)) from the count of state transitions result-
ing from parsing a training set.

1. The probability of an action given an input
symbol is conditioned by the state it orig-
inated from. The probabilities assigned to
each action at a given state must sum to one.
Therefore,

Z 2 pla) =1 (for Vs € S) (6)

l€La(s) acAct(s,l)

where La(s) is the set of input symbols at
state s, Act(s,l) is the set of actions given
a pair of state s and input symbol [, and S
is the set of all states of the LR table. This



means that the actions in the LR table are
normalized within each state.

2. In the case of a shift (Ay),
P(si|si—1,1;,a;) in equation (5) is equal to one
because shift conflict never occurs in an LR
table. Therefore,

pa) = P(l;, a4|si-1)

action

(for a; € Ag)  (7)

3. In the case of a reduce action (A,), the prob-
ability is subdivided according to the state
reached after applying the reduce action. The
reason for this is that Briscoe and Carroll as-
sociate probabilities with transitions in the
automaton rather than with actions in the
action part of the LR table.
P(s;i|si—1,l;,a;) in equation (6) is not one.
Therefore,

p(a) = P(l;, a;]si—1) - P(si|si—1,1i,a;)
(for a; € A,)  (8)

In this case

The probability of a parse derivation in B&C
is the geometric mean of the probabilities of the
actions for state transitions across the whole parse
derivation:-

P(T) = ([ pla:))"/" 9)
i=1
2.2 Two-level Probabilistic Context-Free
Grammar (two-level PCFG)

Two-level PCFG is an extended version of PCFG,
deriving from the idea of providing context-
sensitivity for a context-free grammar.

In the original PCFG model, the probability of
a parse derivation (7T') is regarded as the prod-
uct of probabilities of the rules which are em-
ployed for deriving that parse derivation. Each
production rule of the grammar (r;) is of the form
< A — a,P(r;) > where P(r;) is the associated
probability, and the probabilities associated with
all rules with a given nonterminal A on the left-
hand side must sum to one. Therefore,

> Plald) = 1 (10)

Py = [[Pe) ()

Two-level PCFG utilizes extra information pro-
vided by the parent of nonterminals in expanding
rules (r;) through assignment of rule probabilities.
Thus, the rule probability in equation (10) can be

rewritten as:

S Plalp(4) = 1 (12)
«
where p(A) is the nonterminal that immediately
dominates A (i.e. its parent).

2.3 Probabilistic Generalized LR (PGLR)

Inui et al. (1997) recently proposed a new formal-
ization of a probabilistic model for GLR parsing.
Unlike B&C, a parse derivation is regarded as a
sequence of transitions between LR parse stacks
(T') as shown in (13), where o; is the stack at
time t;, a; is an action, and [; is an input sym-
bol. Schema (13) shows the inherent diversion
from B&C in the definition of parse derivation.

ln,an

On—1 = on  (13)

l1,a31 l2,a2

o) — 01 —

ln—1,an-1
f—

Based on the above definition, the probability of
a complete stack transition sequence T' can be rep-
resented with equation (14), by assuming that o;
contains all the information of its preceding parse
derivation:-

P(T) = HP(li,ai,ai|az~_1)

i=1
= [P ailoicr) - P(oiloi, i, a:) (14)
i=1

Due to the two different types of actions in the
LR table, namely shift and reduce actions (accept is
an additional special dummy action to successful-
ly end the parsing process), states are treated
differently according to the type of action
applied to reach that state. That is, states
reached after the application of a reduce action
have the same input symbol as the former state,
whereas states reached after the application of a
shift action read in a new input symbol. As a re-
sult, states are classified into two classes and the
probabilities of actions are estimated differently
corresponding to the class they belong to. By as-
suming that the stack-top state contains sufficient
information of the current stack, the probability
of the current action a; is estimated from the state
s; on top of the current stack, instead of the full
stack o;. Therefore,

S ~ P(l;,a4si—1) (si—1 € Ss)
P(ly,a;,04l0i 1) = {P(ailsilyli) (oo e 5
(15)

such that:

Z Z pla) = 1 (for s € Ss)(16)

leLa(s) acAct(s,l)



(for s € S,)(17)

> opla) = 1

a€Act(s,l)

where p(a) is the probability of an action a, S; is
the class of states reached after applying a shift ac-
tion, including the initial state, and S, is the class
of states reached after applying a reduce action.

The probability of a parse derivation is the prod-
uct of the probabilities of the actions for stack tran-
sitions across the whole parse derivation:-

n

P(T) = [ p(ay) (18)

i=1
3 Experimental Results

We evaluated the various probabilistic models (i.e.
B&C, two-level PCFG and PGLR) on a portion
of the ATR Japanese corpus, called Spoken Lan-
guage Database (SLDB) (Takezawa, 1997). Given
an input string of Japanese characters, each model
produces probabilistically ranked parses together
with the associated parse probabilities, computed
as described in Section 2.

As the dictionary to generate word candidates
and their corresponding parts-of-speech, we col-
lected all the words used in the corpus. Each
word in the dictionary retains lexical probability
P(w|l), which is the probability of generating word
‘w’ from an arbitrary part-of-speech ‘I’.

Each model was trained equally with the same
hand-annotated training set.
we simply added part of a count to smooth the
model probabilities. Evaluation of the smoothing
method is beyond the scope of this paper. We ad-
ditionally present the results of the original PCFG
framework as the baseline for the evaluation.

For unseen events,

3.1 ATR Corpus and Grammar

The “Spoken Language Database” (SLDB) is a
treebank (a collection of trees annotated with a
syntactic analysis, or “trees” for short) developed
by ATR based on Japanese dialogue. A portion
of the corpus has been revised through applica-
tion of a more detailed phrasal grammar develope-
d by Tanaka et al. (1997). We randomly selected
about 5% of the revised corpus to use as a test set
and trained each parsing model with the remain-
ing approximately 10,000 trees. Table 1 describes
a breakdown of the corpus. The range and average
of sentence length in both the training and test sets
are very close, from which it is plain that the test
set was appropriately selected from the corpus.
We implemented all the models using a GLR

parser. We generated an LALR table from the

Table 1: ATR Corpus

# of Morphemes | # of Characters
ATR Corpus | # of Sent. | Range Ave. | Range Ave.
Training set 10,361 1-34 6.69 2-58 12.57
Test set 534 1-22 6.14 2-42 11.74

treebank governing context-free grammar of 762
production rules, comprised of 137 non-terminal
symbols and 407 terminal symbols. The generated
LALR table contained 856 states.

3.2 Parsing the ATR Corpus

We used PARSEVAL measures (Black et al., 1991)
to compare the performance of the top-ranked
parses for each model.

Table 2 shows that the PGLR model outper-
formed the other models in every metric. The av-
erage parse base! (APB) of the test set is as high
as 1.341 in the character-based measure and 2.067
in the word-based measure. This is comparable
with the SUSANNE corpus (1.256) and SEC cor-
pus (1.239), as reported in (Briscoe and Carrol-
1, 1995) Therefore, the performance of word-based
parsing in this test mainly depends on the accuracy
of selecting words and their corresponding parts-
of-speech. This means that a model that could pro-
vide local context in addition to the global context
would result in higher performance.

As expected, the models which make effective
use of the local context modeling nature of GLR
parsing, namely B&C and PGLR, returned sig-
nificantly higher results than PCFG-based pars-
ing. Although the PCFG rule context in two-level
PCFG extends to a step higher (i.e. to the parent
of the reduced rule), the model still failed to in-
clude appropriate context in some cases. One such
case is shown in Section 4.

Parse accuracy (PA) shows the percentage of
correct parses that are ranked topmost according
to the model probability. By this measure, PGLR
maintained the highest accuracy in ranking pars-
es, while the PCFG-based models dropped down
to slightly higher than 50%. Since the corpus is a
kind of spoken language database, there are a lot
of short response utterances i.e. “yes”, “no” and
“take care”. The lower table in Table 2 is added
to show the performance on sentences ranging from
14 to 42 characters. The difference in performance
becomes obvious in parsing longer sentences.

I Briscoe and Carroll (1995) defined APB as the mea-
sure of ambiguity for a given corpus. It is the geometric
mean over all sentences in the corpus of %/p, where n is
the number of words in a sentence, and p is the number of
parses for that sentence.



Table 2: Performance on the ATR Corpus. PA is the parse accuracy and indicates the percentage of
top-ranked parses that match standard parses. LP/BR are label precision/recall. BP/BR are bracket
precision/recall. 0-CB and m-CB are zero crossing brackets and mean crossing brackets per sentence,
respectively.

2-42 Characters (534 sentences)

Models PA LP LR BP BR | 0-CB | m-CB
B&C 89.33 || 97.79 | 97.54 || 98.53 | 98.06 | 94.57 0.11
Two-leval PCFG | 62.55 || 96.31 | 95.31 || 98.66 | 97.38 | 95.32 0.09
PCFG 53.93 || 95.64 | 94.48 || 98.77 | 97.31 | 94.76 0.08
PGLR 95.32 || 99.06 | 98.47 || 99.53 | 98.73 | 98.50 0.03

Parse performance partly depends on the gram-
mar and the corpus. According to the report of
an experiment on the SUSANNE English corpus
by Carroll (1997), the difference between the per-
formance of PGLR and B&C was not significantly
observed. However, the input test set was a set
of part-of-speech sequences, excluding ambiguity

are not fixed in the input strings, the parser must
allocate appropriate preferences across all possible
parses. In this case, a string can have a part-of-
speech of ‘b’, or be broken into two words with
parts-of-speech of ‘a’ and ‘c’.

Grammar-1:-

1. X—=Uc

in word and part-of-speech selection. Even here,
though PGLR returned the best result in terms of 2.X=>U
the m-CB metric. 3. U= a

4 Discussion 4 U=b
It is obvious that two-level PCFG shows the ben- X
efits of context-sensitivity and yields significant /\ /\
gains over the original PCFG model. However, U ° U U A
the results are still far below those for the prob- ‘ ‘
abilistic GLR-based parsing models. One reason a b b
would be the advantages of local context, i.e. pre-

(s1)[1] (82)[2] (83)[0]

terminal n-gram constraints encoded in the LR ta-
ble. The n-gram constraints are distributed over
the actions of the table. Therefore, the parse trees
generated by probabilistic GLR-~based parsers in-
clude pre-terminal n-gram constraints in the parse
probabilities.

The exemplified case below shows that proba-
bilistic GLR-based parsing can successfully exploit
the advantages of pre-terminal n-gram constraints,
and assign parse probabilities in a more accurate
Based on Grammar-1, the three parse
tree types in Figure 1 can be generated. Suppos-
ing that (S1) and (S2) are found one and two times
respectively in our training set, but (S3) does not
occur. (S3) can be found very rarely, or alterna-
tively never occur because it may have no obvious
meaning. This actually happens for most wide-
coverage grammars.

manner.

The case shown in Figure 1 was indeed found
in our test when ‘b’ is a sentence-ending terminal
Especial-
ly in word-based parsing where terminal symbols

symbol and ‘a’ usually occurs with ‘c’.

Figure 1: Parse trees, with the frequency in the
training set shown in brackets

Probability-1:-

1. S; X > Uc (1/3)
2. S;X = U (2/3)
3.X;U—al(l/3)
4. X; U —> b (2/3)

The bracketed values given for Probability-1 are
the rule probabilities estimated according to the
two-level PCFG model from the training set in
Figure 1. In fact, they are the same as for PCFG
because the parents of rules (1) and (2) are not
different, and neither are the parents of rules (3)
and (4). This means that the extended context in
two-level PCFG does not have any effect if direct
parents are the same. We need more information
to distinguish the cases. Unfortunately, however,
there are no other parent nodes in this case.



Table 3 is an LALR table generated from
Grammar-1. The associated probabilities below
each action are estimated according to B&C and
PGLR, indicated in the first and second lines of
each state row, respectively. For the sake of brevi-
ty, we do not consider any smoothing technique in
this table, although smoothing was performed in
the experiments described in Section 3.

Table 3: LALR table with its associated probabil-
ities. Probabilities in the first line of each state
row are those estimated by B&C and the bracket-
ed values in the second line are those estimated by
PGLR

Action Goto
State a b [ $ U | X
0 s3 52 1 4
1/3 2/3
(1/3) | (2/3)
1 shb | re2
1/2 | 1/2
| @
2 red red
1
(1)
3 re3 re3
1
(1)
4 acc
1
1)
5 rel
1
)

Applying the probabilities prepared in Probabil-
ity-1 for two-level PCFG (as well as PCFG), and
Table 3 for B&C and PGLR, to estimate the parse
probabilities of (S1), (S2) and (S3) in Figure 1,
we obtain the results shown in Table 4. Two-level
PCFG (and PCFG) wrongly assigned preference
to (S3) over (S1), whereas (S3) never occurs in the
training set. Although B&C yields correct prefer-
ence, the probabilities are smaller than what they
should be. In this case, there is no difference be-
tween B&C and PGLR in ranking the parses. The
side-effects of inappropriate normalization of prob-
abilities in B&C has already been explored in (Inui
et al., 1997) and empirically confirmed in the eval-
uation in Section 3.

5 Conclusion

The results of our experiments clearly showed that
the PGLR model is able to make effective use of
both global and local context within the GLR pars-
ing schema. As a result, our model outperformed
both Briscoe and Carroll’s model and the two-level

Table 4: Probabilities of parse trees, (S1), (S2) and
(S3), estimated with each model

Models (S1) | (S2) | (S3)
PCFG 1/9 | 4/9 | 2/9
Two-level PCFG | 1/9 | 4/9 | 2/9
B&C 1/6 | 1/3 0
PGLR 1/3 | 2/3 0

PCFG model in all tests. In addition, PGLR needs
only the probability for each action in the LR table
to compute the overall probability of each parse. It
is thus tractable to training, with the degree of free
parameters as small as the number of distinct ac-
tions, and associates a probability directly to each
action.
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