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Summary

When a natural language processing system encounters unparsable inputs, the analysis should not
be rejected. Instead, the system should attempt to detect the cause of ill-formedness and generate a set
of possible interpretations. However, parsing ill-formed inputs suffers from large computation time due
to extra mechanisms for detecting the existing ill-formedness. This indicates the importance of
developing a parallel robust parsing algorithm. The goal of this research is to develop an effective
parallel algorithm for parsing an ill-formed input under a loosely-coupled hardware environment. The
parallel parser is implemented on PIM/m with 256 processors. Through the experiments, we point out
that parsing ill-formed inputs with the proposed parser can acquire a satisfactory result in its perfor-

mance.

1. Introduction

When people use language spontaneously, they do
not always pay attention to their grammar struc-
ture. According to an extensive study by Thompson
[Thompson 80], 33% of inputs in his query system
were unparsable due to vocabulary problems, punc-
tuation errors, ungrammaticality and spelling
errors. A system should not reject the analysis of
the inputs but should find and fix the ill-formedness.
Coping with such ill-formedness is a challenge in
natural language parsing.

In the past decades, there have been several
attempts to modify existing parsing algorithms to
handle ill-formed inputs based on ATN [Kwasny
81, Weischedel 83], Chart parsing [Kato 91, Mel-
lish 89] and GLR [Saito 88, Tomita 86]. However,
as Mellish [Mellish 89] points out, handling such ill-
formed inputs takes a tremendous amount of time.
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According to our preliminary experiments, parsing
an ill-formed input including more than two errors 7
may be 10 000 times slower than parsing a grammat-
ically correct input with the same length. Such
slowness causes many problems when developing a
practical query system that needs real time response
to realize smooth human-machine communication.
Thus, it is urged to develop a natural language
processing system that can not only handle ill-for-
med inputs but also parse them at a reasonable
speed. The latter emphasizes the importance of
parallel parsing algorithm for ill-formed inputs.

In general, there is no universal parallel algorithm
that is applicable to every kind of problems and the
effectiveness of parallel algorithms varies in individ-
ual cases. Considering specific characteristics of
each problem, some carefulness is needed in tuning
the parallel algorithm [Nitta 92]. However, for
certain problems it is not the case that we can get
full gain even after carefully tuning the parallel
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(then, there are » streams for the input with n-word
length). The messages in ith stream are inactive
edges starting at 1.

If we have an AEP A—A,A; - AsA, from 7 to j
(in a certain processor), this process will try to
match an inactive edge of category As in the jth
stream. If there is such an inactive edge, a new
active edge A—A,4:A; + A, will be generated as a
new AEP and then distributed to another processor.
Later, if there is also an inactive edge of category
A, an inactive edge of category A is generated and
then pushed in the ith stream. At this point, if
X—AY is a production, an AEP X—A « Y will be
generated and distributed to a certain processor.

The static version distributes all the active edges,
starting at 7, to the 7th processor. The number of
processors in use correspond to the length of the
input sentence. At first glance, this version seems to
gain less parallelism than the dynamic version.
However, by this method, all messages (inactive
edges) in each stream are generated by the AEPs in
the same processor and there will be no need to
distribute AEPs to different processors any more.
Then, compared with the dynamic approach, we can
expect less interprocessor communication cost in
the static approach. In chap.4, we will show an
experimental comparison between these two ver-
sions.

3+ 2 Parallel Non-left-corner Bottom-up
Process

When analyzing ill-formed inputs, the restriction
of left-rightness of the P-LC-BU is not appropriate
because it would suppress several subparses that are
useful for hypothesizing the existing errors. The
parallel non-left-corner bottom-up process (P-
NLC-BU) relaxes this restriction and generates
some other active edges. These newly generated
edges are helpful not only for hypothesizing errors,
but also for reducing the searching space in the
error recovery process [Kato 91]. In order to real-
ize the P-NLC-BU, the bottom-up rule and the

* 1 A brief form of the notation defined by Mellish
[Mellish 89].

* 2 The leftmost ones have been already matched during
the P-LC-BU.
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Non Left Corner Bottom up Rule :
for all {i,5,Cy,[]} in ST,
for all C—~C4s,,C,,C8 € G, 5.t. Cay # ]
if Cs; =[] then generate a process,
{'-jvcr[('.l'.c-ﬂ)]}
else generate a process,
{%.¢,C,[(+,4,Ca1),(j, »,Caa)]}
Non Left Corner Fundamental Rule :
for all processes,
{S.E,C\[....(s1,01,[C01, C1, Car))]}
for all {S1,E1,C,,[]} in ST,
if 3,<S) or 3;=» and E; Se; or &;m»
then generate a process,
{S.E.C,{...(81,5:1.C),(E},&1,C2)}}

where ST is the ith stream, G is the set of grammar rules, C; is
a category and C; is a sequence of categories.

Fig.1 Rules in P-NLC-BU.

fundamental rule of traditional chart parsing have
to be modified to allow operating from arbitrary
positions in the RHS of a grammar rule or in the
undeterminated portion of an active edge.

Fig. 1 shows two modified rules applied in this
process : the non-left-corner bottom-up rule (NLC-
BU rule) and the non-left-corner fundamental rule
(NLC-F rule). In these rules, an edge is generalized
and represented in the form of {SP, EP, Cat,
Unparsed}*', where SP (EP) specifies the starting
(ending) position of the edge in the chart. Cat is the
category of the edge and Unparsed is the unparsed
part of the edge. Both SP and EP are denoted by an
integer for determined position, or by ‘* ’ for un-
determined position. The NLC-BU rule provokes
the pre-existing inactive edges in the communica-
tion streams to generate new active edges by match-
ing the inactive edges with arbitrary RHS elements
of the grammar rules (other than the leftmost
The NLC-F rule provokes the existing
active edge process to generate some new active

ones*?).

edges by making the completion between inactive
edges and arbitrary positions of undetermined parts
of that active edge.

3+ 3 Parallel Extended Top-down Parser

The error recovery is to run a parallel extended
top-down parser (P-ETD), exploiting the informa-
tion (a set of the edges) generated by the P-LC-BU
and P-NLC-BU. In this section, we first describe a
way to recover the possible interpretations of an ill-
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formed input in top-down fashion (top-down
search) and then provide a method to construct a
parallel parser. The top-down search starts with
the assumption that all words in the input are finally
covered by the start symbol (e.g., sentence). To
illustrate this, the following data structure is
introduced for representing each state during the
search. This notation is analogous to the one used
in [Kato 91].
<¢hole: N err: M [(S,, E,, CatList,), -

-+, (Sx, Ex, CatList,)]>
where N is the total number of categories in CatList
- CatLists; M is the number of errors detected
before reaching this state; Si, Ei, -, Sa, Ex are
positions in the chart ; CatList; is a set of categories
needed between S; and E..

The initial searching state is <hole: 1 err: 0 [(0,
n, [S])]>, where S is the start symbol (goal cate-
gory) and # is the final position in the input. The
extended top-down parser applies three special
rules (garbage rule, empty category rule and un-
known word rule), in addition to two rules*? of the
original top-down parsing, to handle three kinds of
primitive errors (extra word error, omitted word
error, and unknown/substituted word error). The
description of the rules is illustrated in Fig. 2. These
rules are applied to refine the state during the
search. - In the refinement process, the parser may
reach a state <hole: O err: Err [ ]>. By this time,
one possible interpretation of the ill-formed input
can be obtained. In our implementation, a threshold

is set to limit the searching space (N+ M < Thresh-

old).

(1) An Example

To illustrate the extended top-down parsing, let
us consider a simple CFG and an ill-formed input,
‘Jumbo is ap elephant’, as shown in Fig.3. The
inactive edges (1)~5) and the active edges (6)~48)
are generated by the P-LC-BU. The active edges (9}~
(100 are generated by the P-NLC-BU. Top-down
searching (parsing) process begins with the state
<hole: 1err: 0[(0,4,[S])]. First, the Active Edge
Fundamental rule (defined in Fig.2) refines the
initial state by applying the active edge (6). Then,

* 3 Top-down rule and fundamental rule.
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( CS = Current State, GR = Grammar Rule,
IE = Inactive Edge, AE = Active Edge,
NS = New generated State)

Top Down Activation Rule :
CS : < hole:N err:M [(81,1,[C1,Cry .. ), ..
cea(Snien.Can)} >
GR: C] — RAS
NS : < hole:(N+(length of RHS)-1) err:M
[(:;.e;,fRHS,C;. . ]), AN .,(J.\,C“,Clu)l >

Active Edge Fundamental Rule :
CS: < hole:N er:M [(81,1,[C1.Ca, .. )o -] >
AE: (s, E,C1[(51,E1.C81)s ... (SniEnCsa)l},
here, 8'=a; or &' =+
NS : < hole:(N+EI(length of Ca,)-1) err:M
[($1.E1.Ca1), ..., (Sn.EniCs),
(E.B‘,[Cz, . .])‘ .o .] >

Garbage Rule :

CS : < hole:NV erM {(8,61,[C1.Cyy .. ), -] >

IE : {51,E1,C1.[ ]}, where C; Is a lexical category

NS : < hole;(N-1) erri(M+(5,-8.))
[(EvefCa,.. ) . ] >

Empty Category Rule :
CS : < hole:N err:M [(s,8,.C5;).(92,62.C3), ... >
NS : < hole:(N-(length of Cs,))
err:(M+(length ofCay)) ((s2,62,C22),
O

Unknown Word Rule :
CS : < hole:N err:M [(s1.61,[C1,Ca, .. )0 .. ]} >
If No Edge : {s,,5 +1,C3.[]}.
where C, is a lexical categary
NS : < hole:x(N-1) err:(M+1) [(s1+1,£1,[Ca. .. ]),
I

Fig.2 Rules in P-ETD.

by using the same rule, the resultant state <hole: 1
err: 0 [(1,4,[VP])D is refined by applying the
active edges (7) and (8). From this step, two possible
states will be derived. These two states are later
refined again by the active edges (10) and (9), respec-
tively. Finally, both of the possibilities are refined
by Unknown Word rule to the final states, <hole: 0
err: 1 [ ]> . The error detected is that the word
‘ap’ is an unknown word which has either preposi-
tion (p) or determiner (det) as its category. This
searching progress is shown in the right half of Fig.
3

(2) Parallelization of Top-down Parser

The top-down parser functions as a resolution of
a tree searching problem. Parallelization of this
parser corresponds to the way of distributing nodes
(subtasks) in the searching tree among the proces-

sors. The subtasks are mutually independent of
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Fig.3 An example of the extended top-down parsing.

each other and equivalent to the refinement of a
searching state under the five rules defined in Fig. 2.

In certain tasks (such as the bottom-up parsing)
where communication patterns and dependency of
tasks can be estimated before the execution, the
best load balancing method can be decided statisti-
cally (static load balancing). However, a top-down
search is not such a case since the size of a task (the
number of subtasks) can not be determined unless
the search is finished. Another aspect of the top-
down search is that each subtask can be executed
independently without exchanging information with
other subtasks. According to these properties, the
appropriate method for the top-down search would
be the on-demand dynamic load balancing. Its basic
technique is to dispatch a request for another task
to other processors, if a processor has no task to
execute in the next step.

Fig. 4 illustrates an overview of our load balanc-
ing method. From a set of processors, a master
processor (MP) is selected to control load balanc-
ing by using a task queue and a request queue.
Other processors, called the working processors
(WPs), occupy the five basic routines corresponding
to the rules defined in Fig. 2. Initially, all inactive
and active edges are transferred to all WPs. Each
WP dispatches a request for a task to the MP,
where the requests are kept in the request queue.
By utilizing data flow synchronous mechanism,
when there are some tasks in the task queue of the
MP, the task in the top of the queue will match the
request in the top of the request queLie‘ Then, the
task is automatically transferred to the WP, which

possesses that request. After receiving the task
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Fig. 4 On-demand load balancing scheme in P-ETD.

from the MP, the WP performs five routines
(defined by the rules in Fig.2). As the result of
these routines, some new states (tasks) may be
generated. One of the new states (a task) is execut-
ed in the processor while the remainders are trans-
ferred back to the MP and restored in the task
queue. Unless there is any new state generated, the
current WP will dispatch a request to the MP for a
task in the next step. This request is kept in the
request queue of the MP until it matches the task in
the task queue. This procedure occurs recursively
until no task remains (the task queue is empty and
no more tasks exist in WPs). In this load balancing
method, more parallelism is gained when the search
is spread out, though the system may gain a little
parallelism at the beginning of the search due to
small number of states (nodes) at the top level of
the searching space.

4. Experimental Results and Discussion

Our parallel parser is implemented on PIM/m, a
loosely-coupled MIMD parallel processor with 256
The efficiency of the
parser was investigated by using the grammar with
393 CFG rules (the same as in [Tomita 87]). We
can evaluate the parallel parser through three

processor elements (PEs).

experiments. The first experiment is carried out to
investigate the effectiveness of the parser when a
grammatical input is analyzed. The second one is
conducted to measure the ratio of computation time
between edge-generation phase (P-LC-BU+P-
NLC-BU) and error recovery phase (P-ETD). The
last experiment is to investigate the effectiveness of
the parser in the case of ill-formed inputs.
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In case of grammatical inputs, the P-LC-BU
succeeds and thus the P-NLC-BU and P-ETD will
never get start. As described in sec. 3+1, we imple-
ment two versions of the P-LC-BU, in which the
static and dynamic load balancing methods are
applied. The dynamic version is to assign each
active edge to a processor, while the static version
is to distribute all active edges starting at 7 to the 7
th processor. Consequently, the number of proces-
sors used for the former version is 256 and it is
correspondent to the length of the input for the
latter version. The result speed-ups are shown in
Fig. 5, where the graph plots the length of inputs
versus the true speed-up (the speed-up relative to
the serial version of the parser). The experimental
inputs are shown in Appendix A.

The graph in Fig. 5 shows that the static version
is superior to the dynamic version in all lengths (2~
Though the
dynamic version seems to be the finer-grained algor-

30 words) of grammatical inputs.

ithm, it faces the problem of much interprocessor
communication, and therefore the overhead caused
by the communication is a dominant factor during
parsing. On the other hand, the static version has
relatively less communication overhead. Therefore,
we select the static version for the P-LC-BU of our
parallel parser. It should be noted that the P-LC-
BU can not gain large speed-up (around an increase
of 209) due to the high dependency of partitioned
subtasks.

For the ill-formed inputs, we consider the follow-

8 T 1 1 T 1 T 3
75 frefregeied i
7 Static:Load Batanging o >
6.5 ynamic;Load Balancing...s. o i
6 ot
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Tgs': o7 o
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;‘,45 o s (-3
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Length of sentence (words)

Fig. 5 Speed-up rate gained when inputs are grammatical
(P-LC-BU only).
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ing types of errors: extra-known-word (E-K),
extra-unknown-word (E-U), substituted-known-
word (S-K), substituted-unknown-word (S-U) and
omitted-word (O-W). In addition to the P-LC-BU,
the P-NLC-BU and P-ETD are activated to find all
possible interpretations. In order to examine the
source of parallelism between edge-generation
phase (P-LC-BU+P-NLC-BU) and error recovery
phase (P-ETD) in our parser, we conduct the sec-
ond experiment to measure the computation time of
these phases by using a single processor. The
principle behind this experiment is that if a phase
takes more time, the parallelization of that phase
will have more influence in the total analytical time.

This experiment is carried out for single-error ill-
formed inputs with different lengths (2~18 words)
(cf. Appendix B).
corresponding to the five types of errors are consid-
ered. The graph in Fig. 6 plots the length of inputs
versus the ratio of the computation time for edge-

For each length, five sentences

generation and error recovery phases. The results
indicate that this ratio tends to increase along with
the length of inputs. In other words, for the longer
ill-formed input, the computation time of the error
recovery phase becomes more dominant than that of
the edge-generation phase. This indicates that the
parallelism of the edge-generation phase may
influence the speed-ups of shorter inputs, while the
parallelism of the error recovery phase may
influence the speed-ups of longer inputs.

In the error recovery phase (P-ETD), the paral-
lelism gained depends on the number of states

Time(P-LC-BU + P-NLC-BU)/Time(P-ETD)

o L T
0 2 4 [} 8 10 12 14 16 18 20

Length of sentence (words)

Fig. 6 The computation time ratio between edge-generation
phase and error recovery phase, using single proces-
sor.

A PFarallel Chart-Based Parser for Analyzing Ill-Formed Inputs 537




48

(nodes) in the searching space. In general, when the
number of states becomes larger, we can expect a
larger amount of parallelism. The number of states
increases in accord with the length of the input and
the number of errors because of the increasing
ambiguity by the errors’ positions.

We carry out the last experiment to investigate
the effectiveness of the parallel parser for ill-for-
med inputs. In this experiment, we use short inputs
(the original sentence's length is 7) with one/two
errors and long inputs (the original sentence's
length is 18) with one error (cf. Appendix C). The
remaining three figures, Fig. 7, Fig. 8, and Fig.9,
show the resulting speed-ups for the short inputs
with one error, two errors, and the long inputs with
one error, respectively. All graphs in these figures
plot the number of processors versus the speed-up.

In each figure, the legend (e.g., 1, E-K [932/2187]
(83.5— 6.0 sec) in Fig.7) denotes the number and
type of errors, followed by the number of edges and
states in the form of [ Number-of-edges/Number-of-
states] and finally followed by the computation time
for single processor and for 256 processors. In
principle, the computation time of the edge-genera-
tion phase is proportional to the number of edges,
whereas the computation time of the error recovery
phase is proportional to the number of states in the
searching space.

For all the inputs, the computation time and speed-
up gained come out in the following order : E-K, E-
U. S-K, S-U and O-W. In Fig. 7, we find out that the
number of edges is larger than that of states. This
means the edge-generation phase has a significant
effect on the speed-ups of the total analysis in the
case of short inputs with a single error. In this case,
only small speed-ups were obtained. However, in E-
K type, the error recovery phase seems to have
more influence on the analysis time (due to the large
number of states compared with the number of
edges) and a relatively larger speed-up is gained.
This indicates that the error recovery phase may
gain a lot of parallelism.

The result of short inputs with two errors is
shown in Fig. 8. In this case, the error recovery
phase seems to have more effect on the speed-ups.
In comparison with the case of single error, the case
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Fig. 8 Speed-up for the analysis of short ill-formed inputs
with two errors (original sentence length=7).

of two errors has a larger number of states, and
hence, there will be more opportunity for parallel-
ism and more speed-ups gained for every type of
error.

Fig. 9 indicates the result of long sentences with a
single error. In this case, the parallelism is nearly
gained from the error recovery phase (large number
of states but small number of edges as shown in Fig.
9). The computation time in this case is remarkably
larger than the previous two cases of short inputs
for all types of errors, and conspicuously larger
speed-ups are gained. According to the above-
mentioned results, we notice that the speed-ups
depend on the ratio of the communication and com-
putation time in the error recovery phase (P-ETD),
especially in the cases of two errors and long inputs,
where the error recovery phase is the main analysis.

Vol. 10 No. 4
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Fig. 9 Speed-up for the analysis of long ill-formed inputs
with a single error (original sentence length=18).

In this phase, the interprocessor communication
time is proportional to the number of states (tasks),
while the computation time is proportional to the
number of edges.

In comparison with the case of short inputs with
two errors (Fig. 8), the number of states in search-
ing space is larger in the case of long inputs (Fig. 9).
For long inputs, both communication and computa-
tion time is larger. However, when we focus on one
state, the computation time is larger (owing to the
larger number of edges) but the communication
time is not different (one state transferred). This
makes the case of long inputs gain more parallelism
In addition, for the case of short
inputs with a single error (Fig.7), the number of
states (tasks) is small, so the total idle time of
processors becomes obviously longer and, thus, only
a little parallelism is obtained.

The above experimental result shows that our
parser can obtain a lot of gain when an ill-formed
input is analyzed, especially in the cases of two

and speed-ups.

errors and long inputs. However, we expect that
our parallel parser can achieve more parallelism
and gain in case of longer inputs with multiple
errors**.

As a limitation, our parallel parser still cannot
parse ill-formed inputs in real time. Based on the
above results, the parser takes 1~2 minutes to

analyze the 18-word inputs with a single error. We

* 4 Due to hardware and software limitations, we can not
conduct this experiment.
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expect that this problem can be solved by using
faster networks and processors. However, we have
shown through the experiments that the introduc-
tion of parallel processing to the task of parsing ill-
formed inputs can succeed in parsing speed-up.

5. Conclusion

This paper proposes a parallel parsing method for
analyzing ill-formed input under loosely - coupled
hardware environment. Several pre-existing studies

in parsing grammatical inputs indicate that the
introduction of parallel execution provides only
minimal advantages and none of those studies deals
with the parallel performance of the ill-formed
inputs. By our proposed method, we show that
parallel parsing of ill-formed input can be improved
to a satisfactory level of speed-up. The method,
based on chart parsing algorithm, is composed of
parallel bottom -up parsing (edge - generation
phase) and parallel top-down parsing (error recov-
ery phase). The bottom-up parsing generates the
partial parses of the ill-formed input, while the top-
down parsing exploits these partial parses to find
and fix the existing errors and generates possible
interpretations of the input.

We construct two parallel versions for the bottom-
up parsing, in which static and dynamic load balanc-
ing methods are applied. Through a preliminary
experiment, the static version seems to be more
effective than the dynamic one, since it has less
communication cost. The top-down parsing resem-
bles a tree-searching framework, where on-demand
dynamic load balancing seems to be more suitable.
The parallel parser was implemented and tested for
its efficiency on PIM/m, a loosely-coupled system.
Based on several experimental results with 256
processors, the execution time of our parser is 2~14
times faster than the serial version in the case of
short single-error inputs and up to 60~170 times
faster in the cases of short two-error inputs and
long single-error inputs.

In our present research, the parser finds all inter-
pretations of inputs. However, the following issues
should be considered for future research: () how to
choose the best interpretation, (b) how to cut off the
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distinctly useless interpretations, and (¢) how to
control the parallel parser to accommodate both (a)
and (b).
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A. Experiment No. 1

1. Doit.

2. lhave s pen .

3. ] must not do thas .

Time files ke an arrow .

S. This ia s book about laaguage .

6. This is s book about humaa lasgusgs .
7. It consists of aymboll ds called
8.
9.

o

L ch is d by two
. We look at language (rom a diffarent perspective .
10. What knowledge must & person have to spesk language .
11. It allows the yse of symbolic codes 10 represent [nstructioas .
12. 1t allows the use of symboijc codes to represent the instructions .

13, A program written in assembly language b called & source program .

s-U putet XXX 8t from a different
14. In writing this book , I had several parposes in mind . Oﬂgnl A model for whwaundcrﬁqm-hd-édhwuplm
- s W | A model for estimating performance __ Meavy loads is inciaded for
15. A model for estimating performance aadet heavy loads is included for completesess . EK Au«kmmumuﬁw-m&ahm.
18. 1t inclodes exercises designed 1o heip the student master 3 body of techaiques . E-U | A model for entimating performance xxxx uader heavy loads is included for completeness .
) 8K | A model for sstimating performance |g heavy loads is inchuded for compietenass .
17. 1t Is a reference source with many polaters into the lterature of linguistics . S-U | A model for estimating performance gx beavy loads is incladed for completeness .
Original | Ethernet Is & broadcast mumﬂﬂ system Jor carrylng digital deta amoag
18. How is the mind orgasised to make use of this knowledge in commuaicating . enmpuunguuzhumdlllldhulbuud
19, How is the mind organised to make the use of this knowledge In communicating . o-w s system for carrying digital data packets amoag
) . —anditls d

20. Each statement ls written oa 8 single ine [ computer and i consist of four entries . E-K | Ethernet ia s broadeast communication aystem for castying digital data packets amoog
21, Ethernet Is s broadcast communlcatios system for cacrying digital data packets among computing stations computing are stations and it is distributed .

prTAn) otributed . v s el & compu E-U | Ethernet is & broadcast communication system for casrying digital data packets among

n s.q@.‘dpwuagwdumlhuonlhe'mwnﬂndhudmoqlhm.mnouuﬂu $.K muduh‘ munics aystem for carrying digital data packets among
. $-U | Exberaet is 2 broad X systen foc carrying digital data packets amoag
n,wmmmmu;mmaMmmmmwam i and It s distributed .

51

O Appendix O

Original | I have a heavy pes .
O-W [ T _ s beavy pea.
E-K | | have qpst & heavy pen .
E-U | 1 bave xxxx a hesvy pea.
$-K lm-huvym

a b
Original TEE ubonkubwl Tanguage .
O-W | This is & book about __
123 Thbhubwkmcbwllu‘w.
£-U | This is a book 0 about laaguage .
8-K | This is a book mcst languags .

ATl ok 1 s e s
Original | Wa look at language t perspective .
O-W | We look at ___ from a different parapective .
E-K | We lock st language from a different § perepective .
B-U | Wa look at language from a xxxx diffarent perspective .
8-K | We look at language from poj different perspective .
8-U | We look at language from different tive .
Origioal | The singis computer ook st &nq- Tom a slc&nul pesspective .
O-W | The single computer look at _ from a different perspective .
E-K | The single computer look at hn(um from a diffierent 3 perspective .
E-U | The single computet look at language from a xxxx different perspective .

mwﬁq m m.dau and it is distributed .

24. The source program is processed by the smembler to obtain a machine laaguage program that cas be

executed directly by the 'CPU .

15. Our stody of the mental invoived in lang) di heavily oa concepts that bave beea developed 3
in the aren calied astificial istelligence . C' Experlment NO’ 3
26. Ia performing & mental task like deciding on & chess mave , we aro aware of goiag through a of Origioal TT¢ constets of e I alled
thought procees . O-W | it __ of symbol ds called
27. Labels can be assigaed to a particalas instruction step in 2 soucee program to Ideatify that step as an E-K | 1t consists of of symbotic ds ealled
antry polnt for use In subsequent Lustructions . ey '."mm':‘“‘"“ mands called
38. The ext chapter becs the computationsd approach lnto the coatext of other approaches to langusge by 8-U | zx conaists of symbolic commands called statemests
giving a beief history of the major directions in tnguistics . Original | it coasista of sym! tatements
O-W [ it __ of symbol
29. It Is sade to say that much of the wock Ia computes science has bees pragmatic , based oo a desire 1o — oy ,
prodece compater programs that can parforms wsefal tasks . gz ::MI:: P 4“““‘ ‘;Z
8K | a3 consiats of symbolic comsmands called gf
. 8-U | zxx consista of symbot da calied yyy
B. Experlment No. 2 Original s & brosdcast communicatlon system foe carrying digital data packets amoag computing

stations and it is distributed

Ervoe “Bantence

O-W | ethernet is & broadcast communication system for carrying digital data packets amoag computing

__ and it is distributed

0-W It E-K | sthernet is & broadcast communication system for cazrylng digital data packets among compating
£X | Do it R Al statlons and it is distributed
B0 | Do itz E-U | athernet is & broadcast communication systam for carryiag digital data packets among computing
ok |ni xxx stations and it s dintributed
S0 | Do 8.K | etheraet is a brosdeast communication aystem for carryisg digital dats packets among compating
. the and it is distributed
oW “m:”"' §-U | ethernet is a broadesst communication system for carrying digital data paciets amoag computing

and it is disuributed
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