
Probabilistic GLR Parsing: A New Formalization
and Its Impact on Parsing Performance

INUI Kentaro,† Virach SORNLERTLAMVANICH,††

TANAKA Hozumi†† and TOKUNAGA Takenobu††

This paper presents a new formalization of probabilistic GLR (PGLR) language mod-
eling for statistical parsing. Our model inherits its essential features from Briscoe and
Carroll’s generalized probabilistic LR model (Briscoe and Carroll 1993), which takes
context of parse derivation into account by assigning a probability to each LR parsing
action according to its left and right context. Briscoe and Carroll’s model, however,
has a drawback in that it is not formalized in any probabilistically well-founded
way, which may degrade its parsing performance. Our formulation overcomes this
drawback with a few significant refinements, while maintaining all the advantages
of Briscoe and Carroll’s modeling. In this paper, we discuss the formal and qual-
itative aspects of our PGLR model, illustrating the qualitative differences between
Briscoe and Carroll’s model and our model, and their expected impact on parsing
performance.

KeyWords: statistical parsing, GLR parsing, probabilistic language modeling

1 Introduction

The increasing availability of text corpora has encouraged researchers to explore statis-

tical approaches for various tasks in natural language processing. Statistical parsing is one

of these approaches. In statistical parsing, one of the most straightforward methodologies is

to generalize context-free grammars by associating a probability with each rule in producing

probabilistic context-free grammars (PCFGs). However, as many researchers have already

pointed out, PCFGs are not quite adequate for statistical parsing due to their inability to

encapsulate context of parse derivation. Probabilistic GLR parsing is one existing statistical

parsing methodology which takes context into account to a greater degree than PCFG-based

parsing.

Several attempts have been made to incorporate probability into generalized LR (GLR)

parsing (Tomita 1986). For example, Wright and Wrigley proposed an algorithm to distribute

† Department of Artificial Intelligence, Kyushu Institute of Technology
Iizuka Fukuoka 820 Japan inui@ai.kyutech.ac.jp

†† Graduate School of Information Science and Engineering, Tokyo Institute of Technology
O-okayama Meguro Tokyo 152 Japan {virach,tanaka,take}@cs.titech.ac.jp

33

Journal of Natural Language Processing Vol. 5 No. 3 July 1998

probabilities originally associated with CFG rules to LR parsing actions, in such a way that

the resulting model is equivalent to the original PCFG (Wright and Wrigley 1991). Perhaps,

the most naive way of coupling a PCFG model with the GLR parsing framework would be

to assign the probability associated with each CFG rule to the reduce actions for that rule.

Wright and Wrigley expanded on this general methodology by distributing probabilities to

shift actions as well as reduce actions, so that the parser can prune improbable parse deriva-

tions after shift actions as well as reduce actions. This can be advantageous particularly when

one considers applying a GLR parser to, for example, continuous speech recognition. However,

since their principal concern was in compiling PCFGs into the GLR parsing framework, their

language model still failed to capture context-sensitivity of languages.

Su et al. proposed a way of introducing probabilistic distribution into the shift-reduce pars-

ing framework (Su, Wang, Su, and Chang 1991). Unlike Wright and Wrigley’s work, the goal

of this research was the construction of a model that captures context. Their model distributes

probabilities to stack transitions between two shift actions, and associates a probability with

each parse derivation, given by the product of the probability of each change included in the

derivation. Further, they also described an algorithm to handle this model within the GLR

parsing framework, gaining parse efficiency. However, since their probabilistic model in itself

is not intimately coupled with the GLR parsing algorithm, their model needs an additional

complex algorithm for training.

On the other hand, Briscoe and Carroll proposed the distribution of probabilities directly

to each action in an LR table (Briscoe and Carroll 1993). Their model overcomes the draw-

back of derivational context-insensitivity of PCFGs by estimating the probability of each LR

parsing action according to its left (i.e. LR parse state) and right context (i.e. next input

symbol). The probability of each parse derivation is computed as the product of the prob-

ability assigned to each action included in the derivation. Unlike the approach of Su et al.,

this makes it easy to implement context-sensitive probabilistic parsing by slightly extending

GLR parsers, and the probabilistic parameters can be easily trained simply by counting the

frequency of application of each action in parsing the training sentences. Furthermore, their

model is expected to be able to allow the parser to prune improbable parse derivations at

an equivalently fine-grained level as that of Wright and Wrigley’s statistical parser, since it

assigns probabilities to both shift and reduce actions. However, in as far as we have tested the

performance of Briscoe and Carroll’s model (B&C model, hereafter) in our preliminary ex-

periments, it seems that, in many cases, it does not significantly improve on the performance

of the PCFG model, and furthermore, in the worst case, it can be even less effective than

34

Inui, K. et al. Probabilistic GLR Parsing

the PCFG model (Sornlartlamvanich, Inui, Shirai, Tanaka, Tokunaga, and Takezawa 1997b).

According to our analysis, these seem to be the results, principally, of the method used for

normalizing probabilities in their model, which may not be probabilistically well-founded. In

fact, Briscoe and Carroll have not explicitly presented any formalization of their model.

This line of reasoning led us to consider a new formalization of probabilistic GLR (PGLR)

parsing. In this paper, we propose a newly formalized PGLR language model for statistical

parsing, which has the following advantages:

• It provides probabilistically well-founded distributions.

• It captures context of parse derivation.

• It can be trained simply by counting the frequency of each LR parsing action.

• It allows the parser to prune improbable parse derivations, even after shift actions.

The focus of this paper is on the formal and qualitative aspects of our PGLR model rather

than the empirical quantitative evaluation of the model. Large-scaled experiments for the

empirical evaluation is currently being conducted. In our preliminary experiments, we have so

far been achieving promising results, some of which is reported elsewhere (Sornlartlamvanich

et al. 1997b; Sornlartlamvanich, Inui, Shirai, Tanaka, Tokunaga, and Takezawa 1997a). In

what follows, we first present our new formalization of PGLR parsing (Section 2). We then

review B&C model according to our formalization, demonstrating that B&C model may not

be probabilistically well-founded through the use of simple examples (Section 3). We finally

discuss how our refinement is expected to influence parsing performance through a further

example (Section 4).

2 A PGLR Language Model

Suppose we have a CFG and its corresponding LR table. Let Vn and Vt be the nonterminal

and terminal alphabets, respectively, of the CFG. Further, let S and A be the sets of LR parse

states and parsing actions appearing in the LR table, respectively. For each state s ∈ S, the

LR table specifies a set La(s) ⊆ Vt of possible next input symbols. Further, for each coupling

of a state s and input symbol l ∈ La(s), the table specifies a set of possible parsing actions:

Act(s, l) ⊆ A. Each action a ∈ A is either a shift action or reduce action. Let As and Ar be

the set of shift and reduce actions, respectively, such that A = As ∪Ar ∪ {accept} (accept is

a special action denoting the completion of parsing).

As with most statistical parsing frameworks, given an input sentence, we rank the parse

tree candidates according to the probabilities of the parse derivations that generate those trees.

In LR parsing, each parse derivation can be regarded as a complete sequence of transitions

35

Journal of Natural Language Processing Vol. 5 No. 3 July 1998

between LR parse stacks, which we describe in detail below. Thus, in the following, we use the

terms parse tree, parse derivation, and complete stack transition sequence interchangeably.

Given an input word sequence W = w1 . . . wn, we estimate the distribution over the parse

tree candidates T as follows:

P (T |W) = α · P (T) · P (W |T) (1)

The first scaling factor α is a constant that is independent of T , and thus does not need to be

considered in ranking parse trees. The second factor P (T) is the distribution over all the possi-

ble trees, i.e. complete stack transition sequences, that can be derived from a given grammar,

such that, for T being the infinite set of all possible complete stack transition sequences:

∑

T∈T
P (T) = 1 (2)

We estimate this syntactic distribution P (T) using a PGLR model. The third factor P (W |T)

is the distribution of lexical derivations from T , where each terminal symbol of T is assumed

to be a part of speech symbol. Most statistical parsing frameworks estimate this distribution

by assuming that the probability of the i-th word wi of W depends only on its corresponding

terminal symbol (i.e. part of speech) li. Since li is uniquely specified by T for each i, we

obtain equation (3):

P (W |T) =
n∏

i=1

P (wi|li) (3)

where n is the length of W . One could take richer context in estimating the lexical distribution

P (W |T). For example, we propose to incorporate the statistics of word collocations into this

lexical derivation model elsewhere (Inui, Shirai, Tanaka, and Tokunaga 1997a, 1997b; Shirai,

Inui, Tanaka, and Tokunaga 1997). However, this issue is beyond the scope of this paper.

A stack transition sequence T can be described as (4):

σ0
l1,a1=⇒ σ1

l2,a2=⇒ . . .
ln−1,an−1=⇒ σn−1

ln,an=⇒ σn (4)

where σi is the i-th stack, whose stack-top state is denoted by top(σi), and li ∈ La(top(σi−1))

and ai ∈ Act(top(σi−1), li) are, respectively, an input symbol and a parsing action chosen

at σi−1. A parse derivation completes if ln = $ and an = accept. We say stack transition

sequence T is complete if ln = $, an = accept, and σn = final, where final is a dummy symbol

denoting the stack when parsing is completed. Hereafter, we consistently refer to an LR parse

state as a state and an LR parse stack as a stack. And, unless defined explicitly, si denotes

the stack-top state of the i-th stack σi, i.e. si = top(σi).

36

Inui, K. et al. Probabilistic GLR Parsing

The probability of a complete stack transition sequence T can be decomposed as in (6):

P (T) = P (σ0, l1, a1, σ1, . . . , σn−1, ln, an, σn) (5)

= P (σ0) ·
n∏

i=1

P (li, ai, σi|σ0, l1, a1, σ1, . . . , li−1, ai−1, σi−1) (6)

Here we assume that σi contains all the information of its preceding parse derivation that has

any effect on the probability of the next transition, namely:

P (li, ai, σi|σ0, l1, a1, σ1, . . . , li−1, ai−1, σi−1) = P (li, ai, σi|σi−1) (7)

This assumption simplifies equation (6) to:

P (T) =
n∏

i=1

P (li, ai, σi|σi−1) (8)

Now, we show how we estimate each transition probability P (li, ai, σi|σi−1), which can be

decomposed as in (9):

P (li, ai, σi|σi−1) = P (li|σi−1) · P (ai|σi−1, li) · P (σi|σi−1, ai, li) (9)

To begin with, we estimate the first factor P (li|σi−1) as follows:

Case 1. i = 1:

P (l1|σ0) = P (l1|s0) (10)

Case 2. The previous action ai−1 is a shift action, i.e. ai−1 ∈ As . We assume that only

the current stack-top state si−1 = top(σi−1) has any effect on the probability of the

next input symbol li. This means that:

P (li|σi−1) = P (li|si−1) (11)

where ∑

l∈La(s)

P (l|s) = 1 (12)

Case 3. The previous action ai−1 is a reduce action, i.e. ai−1 ∈ Ar . Unlike Case 2, the

input symbol does not get consumed for reduce actions, and thus the next input symbol

li is always identical to li−1; namely, li can be deterministically predicted. Therefore,

P (li|σi−1) = 1 (13)

Next, we estimate the second factor P (ai|σi−1, li) relying on the analogous assumption that

only the current stack-top state si−1 and input symbol li have any effect on the probability

37

Journal of Natural Language Processing Vol. 5 No. 3 July 1998

of the next action ai:

P (ai|σi−1, li) = P (ai|si−1, li) (14)

where ∑

a∈Act(s,l)

P (a|s, l) = 1 (15)

Finally, given the current stack σi−1 and action ai, the next stack σi can be uniquely deter-

mined:

P (σi|σi−1, li, ai) = 1 (16)

Equation (16) can be derived from the LR parsing algorithm; namely, given an input sym-

bol li+1 ∈ La(top(σi)) and an action ai+1 ∈ Act(top(σi), li+1), the next (derived) stack

next(σi, ai+1) (= σi+1) can always be uniquely determined as follows:

• If the current action ai+1 is a shift action for an input symbol li+1, then the parser

consumes li+1, pushing li+1 onto the stack, and then pushes the next state si+1, which

is uniquely specified by the LR table, onto the stack.

• If the current action ai+1 is a reduction by a rule A → β, the parser derives the next

stack as follows. The parser first pops |β| grammatical symbols together with |β| state

symbols off the stack, where |β| is the length of β. In this way, the stack-top state sj

is exposed. The parser then pushes A and si+1 onto the stack, with si+1 being the

entry specified in the LR goto table for sj and A. All these operations are executed

deterministically.

As shown in equations (11) and (13), the probability P (li|σi−1) should be estimated dif-

ferently depending on whether the previous action ai−1 is a shift action or a reduce action.

Fortunately, given the current stack-top state si−1, it is always possible to determine whether

the previous action ai−1 was a shift or reduction. Thus, we divide the set of LR parse states

S into two subsets: Ss , which is the set containing s0 and all the states reached immediately

after applying a shift action, and Sr , which is the set of states reached immediately after

applying a reduce action:

Ss
def= {s0} ∪ {s|∃a ∈ As , σ : s = top(next(σ, a))} (17)

Sr
def= {s|∃a ∈ Ar , σ : s = top(next(σ, a))} (18)

S = Ss ∪ Sr and Ss ∩ Sr = ∅ (19)

where s0 is the initial state. See Appendix A for a brief proof of the mutual exclusiveness

between Ss and Sr . Equations (9) through (18) can be summarized as:

P (li, ai, σi|σi−1) =





P (li, ai|si−1) (for si−1 ∈ Ss)

P (ai|si−1, li) (for si−1 ∈ Sr)
(20)

38

Inui, K. et al. Probabilistic GLR Parsing

Since Ss and Sr are mutually exclusive, we can assign a single probabilistic parameter to

each action in an LR table, according to equation (20). To be more specific, for each state

s ∈ Ss , we associate a probability p(a) with each action a ∈ Act(s, l) (for l ∈ La(s)), where

p(a) = P (l, a|s) such that:

∑

l∈La(s)

∑

a∈Act(s,l)

p(a) = 1 (for s ∈ Ss) (21)

On the other hand, for each state s ∈ Sr , we associate a probability p(a) with each action

a ∈ Act(s, l) (for l ∈ La(s)), where p(a) = P (a|s, l) such that:

∑

a∈Act(s,l)

p(a) = 1 (for s ∈ Sr) (22)

Through assigning probabilities to actions in an LR table in this way, we can estimate the

probability of a stack transition sequence T as given in (4) by computing the product of the

probabilities associated with all the actions included in T :

P (T) =
n∏

i=1

p(ai) (23)

Before closing this section, we describe the advantages of our PGLR model. Our model

inherits some of its advantages from B&C model. First, the model captures context as in

equation (14): the probabilistic distribution of each parsing action depends on both its left

context (i.e. LR parse state) and right context (i.e. input symbol). We elaborate this through

an example in Section 4. Second, since the probability of each parse derivation can be es-

timated simply as the product of the probabilities associated with all the actions in that

derivation, we can easily implement a probabilistic LR parser through a simple extension to

the original LR parser. We can also easily train the model, as we need only count the fre-

quency of application of each action in generating correct parse derivations for each entry

in the training corpus. Third, both B&C model and our model are expected to be able to

allow the parser to prune improbable parse derivations at an equivalently fine-grained level as

that for Wright and Wrigley’s statistical parser, since these two models assign probabilities

to both shift and reduce actions. Furthermore, since our model assigns a single probabilistic

parameter to each action in an LR table similarly to B&C model, the algorithm proposed by

Carroll and Briscoe (Carroll and Briscoe 1992) for efficient unpacking of packed parse forests

with probability annotations can be equally applicable to our model. Finally, although not

explicitly pointed out by Briscoe and Carroll, it should also be noted that PCFGs give global

preference over structures but do not sufficiently reflect local bigram statistics of terminal

symbols, whereas both B&C model and our PGLR model reflect these types of preference

39

Journal of Natural Language Processing Vol. 5 No. 3 July 1998

simultaneously. P (li|si−1) in equation (11) is a model that predicts the next terminal symbol

li for the current left context si−1 ∈ Ss . In this case of si−1 ∈ Ss , since si−1 uniquely speci-

fies the previous terminal symbol li−1, P (li|si−1) = P (li|si−1, li−1), which is a slightly more

context-sensitive version of the bigram model of terminal symbols P (li|li−1). This feature is

expected to be significant particularly when one attempts to integrate syntactic parsing with

morphological analysis in the GLR parsing framework (e.g. (Li and Tanaka 1995)), since the

bigram model of terminal symbols has been empirically proven to be effective in morphological

analysis.

Besides these advantages, which are all shared with B&C model, our model overcomes

the drawback of B&C model; namely, our model is based on a probabilistically well-founded

formalization, which is expected to improve the parsing performance. We discuss this issue in

the remaining sections.

3 Comparison with Briscoe and Carroll’s Model

In this section, we briefly review B&C model, and make a qualitative comparison between

their model and ours.

In our model, we consider the probabilities of transitions between stacks as given in equa-

tion (8), whereas Briscoe and Carroll consider the probabilities of transitions between LR

parse states as below:

P (T) =
n∏

i=1

P (li, ai, si|si−1) (24)

=
n∏

i=1

P (li, ai|si−1) · P (si|si−1, li, ai) (25)

Briscoe and Carroll initially associate a probability p(a) with each action a ∈ Act(s, l) (for

s ∈ S, l ∈ La(s)) in an LR table, where p(a) corresponds to the first factor in (25):

p(a) = P (l, a|s) (26)

such that:

∀s ∈ S.
∑

l∈La(s)

∑

a∈Act(s,l)

p(a) = 1 (27)

In this model, the probability associated with each action is normalized in the same manner

for any state. However, as discussed in the previous section, the probability assigned to an

action should be normalized differently depending on whether the state associated with the

action is of class Ss or Sr as in equations (21) and (22). Without this treatment, probability

40

Inui, K. et al. Probabilistic GLR Parsing

(a) [m]

4

5S

X

x 10

u 2

(b) [n]

4

5S

X

x 10

v 3

Fig. 1 Parse trees derived from grammar G1 (The square-bracketed value below each tree
denotes the number of occurrences of that tree.)

P (li|si−1) in equation (11) could be incorrectly duplicated for a single terminal symbol, which

would make it difficult to give probabilistically well-founded semantics to the overall score.

As a consequence, in B&C formulation, the probabilities of all the complete parse derivations

may not sum up to one, which would be inconsistent with the definition of P (T) (see equation

(2)).

To illustrate this, let us consider grammar G1 as follows.

Grammar G1:

(1) S → X u

(2) S → X v

(3) X → x

This grammar allows only two derivations as shown in Figure 1. Suppose that we have tree

(a) with frequency m, and (b) with frequency n in the training set. Training B&C model and

our model with these trees, we obtain the models as shown in Table 1, where, for each LR

parse state, each bracketed value in the top of each row denotes the number of occurrences of

the action associated with it, and the numbers in the middle and bottom of each row denote

the probabilistic parameters of B&C model and our model, respectively.

Given this setting, the probability of each tree in Figure 1 is computed as follows (see

Figure 1, where each circled number denotes the LR parse state reached after parsing has

proceeded from the left-most corner to the location of that number):

PB&C(tree(a)) = 1 · m

m + n
· m

m + n
· 1 =

(
m

m + n

)2

(28)

PB&C(tree(b)) = 1 · n

m + n
· n

m + n
· 1 =

(
n

m + n

)2

(29)

PPGLR(tree(a)) = 1 · m

m + n
· 1 · 1 =

m

m + n
(30)

PPGLR(tree(b)) = 1 · n

m + n
· 1 · 1 =

n

m + n
(31)

where B&C denotes B&C model and PGLR denotes our model. This computation shows that

41

Journal of Natural Language Processing Vol. 5 No. 3 July 1998

Table 1 LR table for grammar G1, with trained parameters (The numbers given in the
middle and bottom of each row denote the parameters for B&C model and our
model, respectively.)

state action goto
u v x $ X S

0 sh1 (m+n) 4 5
(Ss) 1

1
1 re3 (m) re3 (n)

(Ss) m/(m+n) n/(m+n)
m/(m+n) n/(m+n)

2 re1 (m)
(Ss) 1

1
3 re2 (n)

(Ss) 1
1

4 sh2 (m) sh3 (n)
(Sr) m/(m+n) n/(m+n)

1 1
5 acc (m+n)

(Sr) 1
1

our model correctly fits the distribution of the training set, with the sum of the probabilities

being one. In the case of B&C model, on the other hand, the sum of these two probabilities

is smaller than one. The reason can be described as follows. After shifting the left-most input

symbol x, which leads the process to state 1, the model predicts the next input symbol as

either u or v, and chooses the reduce action in each case, reaching state 4. So far, both B&C

model and our model behave in the same manner. In state 4, however, B&C model repredicts

the next input symbol u (or v), despite it already having been determined in state 1. This

duplication makes the probability of each tree smaller than what it should be. In our model,

on the other hand, the probabilities in state 4, which is of class Sr , are normalized for each

input symbol, and thus the prediction of the input symbol is not duplicated.

Briscoe and Carroll are also required to include the second factor P (si|si−1, li, ai) in (25)

since this factor does not always compute to one. In fact, if we have only the information

of the current stack-top state si−1 and apply a reduce action in that state, the next state

si is not always uniquely determined. For this reason, Briscoe and Carroll further subdivide

probabilities assigned to reduce actions according to the stack-top states exposed immediately

after the pop operations associated with those reduce actions. Contrastively, in our model,

42

Inui, K. et al. Probabilistic GLR Parsing

(a) [m]
3

6S

X

x

10
u 4

(b) [n]
3

6S

X

x

20
v 5

Fig. 2 Parse trees derived from grammar G2

given the current stack, the next stack after applying any action can be uniquely determined

as in (16), and thus we do not need to subdivide the probability for any reduce action.

To illustrate this, let us take another simple example in grammar G2 as given below, with

all the possible derivations shown in Figure 2. Further, the LR table is shown in Table 2.

Grammar G2:

(1) S → u X

(2) S → v X

(3) X → x

Let us compute again the probability of each tree for the two models:

PB&C(tree(a)) =
m

m + n
· 1 · m

m + n
· 1 =

(
m

m + n

)2

(32)

PB&C(tree(b)) =
n

m + n
· 1 · n

m + n
· 1 =

(
n

m + n

)2

(33)

PPGLR(tree(a)) =
m

m + n
· 1 · 1 · 1 =

m

m + n
(34)

PPGLR(tree(b)) =
n

m + n
· 1 · 1 · 1 =

n

m + n
(35)

In B&C model, the probability assigned to the reduce action in state 3 with the next input

symbol being $ is subdivided according to whether the state exposed by the pop operation is

state 1 or 2 (see Table 2). This makes the probability of each tree smaller than what it should

be.

The above examples illustrate that, in B&C model, the probabilities of all the possible parse

trees may not necessarily sum up to one, due to the lack of probabilistically well-founded nor-

malization, which would be inconsistent with the definition of P (T) (see equation (2)). In

our model, on the other hand, the probabilities of all the parse trees are guaranteed to always

sum to one1. This flaw in B&C model can be considered to be related to Briscoe and Car-

1 Precisely speaking, this is the case if the model is based on a canonical LR (CLR) table. In the case of
lookahead LR (LALR) tables, the probabilities of all the parse trees may not sum up to one even for the
case of our model, since some stack transitions may not be accepted (for details of CLR and LALR, see, for
example, (Aho, Ravi, and Ullman 1986; Chapman 1987)). However, this fact will never prevent our model

43

Journal of Natural Language Processing Vol. 5 No. 3 July 1998

Table 2 LR table for grammar G2, with trained parameters (Each middle bracketed
number denotes the state exposed by the stack-pop operation associated with
the corresponding reduce action.)

state action goto
u v x $ X S

0 sh1 (m) sh2 (n) 6
(Ss) m/(m+n) n/(m+n)

m/(m+n) n/(m+n)
1 sh3 (m) 4

(Ss) 1
1

2 sh3 (n) 5
(Ss) 1

1
3 re3 (m+n)

(Ss)
(1)m/(m+n) ; (2)n/(m+n)

1
4 re1 (m)

(Sr)
(0)1
1

5 re2 (n)

(Sr)
(0)1
1

6 acc (m+n)
(Sr) 1

1

roll’s claim that their model tends to favor parse trees involving fewer grammar rules, almost

regardless of the training data. In B&C model, stack transition sequences involving more

reduce actions tend to be assigned much lower probabilities for the two reasons mentioned

above: (a) the probabilities assigned to actions following reduce actions tend to be lower than

what they should be, since B&C model repredicts the next input symbols immediately after

reduce actions, (b) the probabilities assigned to reduce actions tend to be lower than what

they should be, since they are further subdivided according to the stack-top states exposed

by the stack-pop operations. Therefore, given the fact that stack transition sequences involv-

ing fewer reduce actions correspond to parse trees involving fewer grammar rules, it is to be

expected that B&C model tends to strongly prefer parse trees involving fewer grammar rules.

To solve this problem, Briscoe and Carroll proposed calculating the geometric mean of the

probabilities of the actions involved in each stack transition sequence. However, this solution

makes their model even further removed from a probabilistically well-founded model. In our

from being applicable to LALR. For further discussion, see Appendix B and (Inui, Sornlartlamvanich, Tanaka,
and Tokunaga 1997c).

44

Inui, K. et al. Probabilistic GLR Parsing

S

x

S

S

u S

x
(b) [2]

5

4

3

7

4

re1

(a) [3]
3

sh3

7

5

S

u S

S

x

S

x

4

5

S

x

S

S

v S

x
(d) [4]

6

4

3

7

4

re2

(c) [1]
3

sh3

7

6

S

v S

S

x

S

x

4

6

Fig. 3 Training set for grammar G3

model, on the other hand, any bias toward shorter derivations is expected to be much weaker,

and thus we do not require the calculation of the geometric mean.

One may wonder to what extent these differences matter for practical statistical parsing.

Although this issue needs to be explored through large-scaled empirical evaluation, it must be

still worthwhile to consider some likely cases where the difference discussed here will influence

parsing performance. We discuss such a case through a further example in the next section.

4 Expected Impact on Parsing Performance

In this section, we first demonstrate through an example how B&C model and our model,

which we class as GLR-based models here, captures richer context than the PCFG model. We

then return to the issue raised at the end of the previous section.

Suppose we have grammar G3 as follows:

Grammar G3:

(1) S → u S

(2) S → v S

(3) S → x

(4) S → S S

Further, let us assume that we train the PCFG model, B&C model, and our PGLR model,

respectively, using a training set as shown in Figure 3, where trees (a) and (b) are the parse

trees for input sentence W1 = uxx, and (c) and (d) are those for W2 = vxx. Table 3 shows the

LR table for grammar G3, with the trained parameters2.

According to the training data in Figure 3, where the square-bracketed value below each

tree denotes the number of occurrences of that tree, right branching (i.e. tree (a)) is preferred

for input sentence W1, whereas left branching (i.e. tree (d)) is preferred for input sentence

2 In practical applications, when computing parameters, one would need to use some smoothing technique in
order to avoid assigning zero to any parameter associated with an action that had never occurred in training.

45

Journal of Natural Language Processing Vol. 5 No. 3 July 1998

Table 3 LR table for grammar G3

state action goto
u v x $ S

0 sh1 sh2 sh3 4
(Ss) .5 .5 0

.5 .5 0

1 sh1 sh2 sh3 5
(Ss) 0 0 1

0 0 1

2 sh1 sh2 sh3 6
(Ss) 0 0 1

0 0 1

3 re3 re3 re3 re3

(Ss) 0 0 (1).25 ; (2).25 (4).3 ; (5).15 ; (6).05
0 0 .5 .5

4 sh1 sh2 sh3 acc 7
(Sr) 0 0 .38 .62

1 1 1 1

5 sh1/re1 sh2/re1 sh3/re1 re1 7

(Sr) 0/0 0/0 .38/(1).25 (0).38
.5/.5 .5/.5 .6/.4 1

6 sh1/re2 sh2/re2 sh3/re2 re2 7

(Sr) 0/0 0/0 .17/(2).67 (0).17
.5/.5 .5/.5 .2/.8 1

7 sh1/re4 sh2/re4 sh3/re4 re4 7

(Sr) 0/0 0/0 0/0 (0).6 ; (1).3 ; (2).1
.5/.5 .5/.5 .5/.5 1

W2. It is easy to see that the PCFG model does not successfully learn these preferences for

either of the sentences, since all the parse trees produced for each sentence involve the same

set of grammar rules.

Unlike the PCFG model, both the GLR-based models can learn these preferences in the

following way. In the LR parsing process for sentence W1, the point where the parser must

choose between parse trees (a) and (b) is in state 5, which is reached after the reduction of

the left-most x into S (see Figure 3). In state 5, if the shift action is chosen, parse tree (a) is

derived, while, if the reduce action is chosen, (b) is derived. Thus, the preference for (a) to

(b) is reflected in the distribution over the shift-reduce conflict in this state. Table 3 shows

that both B&C model and our model correctly prefer the shift action in state 5 with the next

46

Inui, K. et al. Probabilistic GLR Parsing

Table 4 Distributions over the parse trees from Figure 3 (trees (a) and (b) are the parse
trees for input sentence W1 = uxx, and (c) and (d) are those for W2 = vxx)

P (tree(a)|W1) P (tree(b)|W1) P (tree(c)|W2) P (tree(d)|W2)

PCFG .50 .50 .50 .50
B&C .28 .72 .003 .997
PLR .60 .40 .20 .80

training data .60 .40 .20 .80

input symbol being x. For input sentence W2, on the other hand, the left branching tree (d)

is preferred. This preference is also reflected in the distribution over the shift-reduce conflict

in the state reached after the reduction of the left-most x into S, but, this time, the relevant

state is state 6 instead of state 5. According to Table 3, state 6 with the next input symbol

being x correctly prefers the reduce action, which derives the left-branching tree (d). In sum,

the different preferences for W1 and W2 are reflected separately in the distributions assigned

to the different states (i.e. states 5 and 6).

As illustrated in this example, for each parsing choice point, the LR parse state associated

with it can provide a context for specifying the preference for that parse choice. This feature of

the GLR-based models enables us to take richer context into account than the PCFG model.

Furthermore, although not explicitly demonstrated in the above example, it should also be

noted that the GLR-based models are sensitive to the next input symbol as shown in (14) in

Section 2.

Now, let us see how the probabilities assigned to LR parsing actions are reflected in the

probability of each parse tree. Table 4 shows the overall distributions provided by the PCFG

model, B&C model, and our model, respectively, to the trees in Figure 33. According to the

table, our model accurately learns the distribution of the training data, whereas B&C model

does not fit the training data very well. In particular, for sentence W1, it goes as far as incor-

rectly preferring parse tree (b). This occurs due to the lack of well-founded normalization of

probabilities as discussed in Section 3. As mentioned above, B&C model correctly prefers the

shift action in state 5, as does our model. However, for the rest of the parsing process, B&C

model associates a considerably higher probability to the process from state 4 through 3 and

7 to 4, which derives tree (b), than the process from 3 through 7 and 5 to 4, which derives tree

3 Although Briscoe and Carroll proposed to take the geometric mean of peripheral distributions as mentioned
in Section 3, we did not apply this operation when computing the probabilities in Table 4, to give the reader
a sense of the difference between the probabilities given by B&C model and our model. Note that, in our
example, since the number of state transitions involved in each parse tree is always the same for any given
sentence, taking the geometric mean would not change the preference order.

47

Journal of Natural Language Processing Vol. 5 No. 3 July 1998

(a), since, in their model, the former process is inappropriately supported by the occurrence of

tree (d). For example, in both parsing processes for (b) and (d), the pop operation associated

with the reduction in state 3 exposes state 4, and B&C model thus assigns an inappropriately

high probability to this reduction, compared to the reduction in state 3 for tree (a).

Of course, as far as various approximations are made in constructing a probabilistic model

similar to both B&C model and our model, it is always the case that the model may not fit

the training data precisely due to the insufficiency of the model’s complexity. Analogous to

B&C model, our model does not always fit the training data precisely due to the independence

assumptions such as equations (7), (11), etc. However, it should be noted that, as illustrated

by the above example, there is a likelihood that B&C model not fitting the training data is due

not only to the insufficiency of complexity, but also to the lack of well-founded normalization.

5 Conclusion

In this paper, we newly presented a formalization of probabilistic LR parsing. Our mod-

eling inherits some of its features from B&C model. Namely, it captures derivational context

to a greater degree then the PCFG model, and naturally integrates local bigram statistics of

terminal symbols and global preference over structures of parse trees. Furthermore, since the

model is tightly coupled with GLR parsing, it can be easily implemented and trained. Inher-

iting these advantages, our formalization additionally overcomes an important drawback of

B&C model: the lack of well-founded normalization of probabilities. We demonstrated through

examples that this refinement is expected to improve parsing performance. Those examples

may seem to be relatively artificial and forced. However, in our preliminary experiments, we

are achieving some promising results, which support our claim (see (Sornlartlamvanich et al.

1997b, 1997a) for preliminary results). We are now planning to conduct further large-scaled

experiments.

It should also be noted that our modeling is equally applicable to both CLR tables and

LALR tables. Since it is a highly empirical issue whether it is better to use CLR-based mod-

els or LALR-based models, it may be interesting to make experimental comparisons between

these two types (for a qualitative comparison, see (Inui et al. 1997c)).

Other approaches to context-sensitive statistical parsing have also been proposed, such as

(Magerman and Marcur 1991; Black, Jelinek, Lafferty, Magerman, Mercer, and Roukos 1993;

Kita 1994; Sekine and Grishman 1995). We need to make theoretical and empirical compar-

isons between these models and ours. The significance of introducing lexical sensitivity into

language models should also not be underestimated. In fact, several attempts to use lexically

48

Inui, K. et al. Probabilistic GLR Parsing

sensitive models already exist: e.g. (Schabes 1992; Collins 1996; Li 1996; Charniak 1997).

Our future research will also be directed towards this area, the initial findings of which are

reported in (Inui et al. 1997a, 1997b; Shirai et al. 1997).

Acknowledgement

The authors would like to thank the reviewers for their suggestive comments. They would

also like to thank UEKI Masahiro and SHIRAI Kiyoaki (Tokyo Institute of Technology) for

their fruitful discussion on the formalization of the proposed model. Finally, they would like

to thank Timothy Baldwin (Tokyo Institute of Technology) for his help in writing this paper.

Reference

Aho, A., Ravi, S., and Ullman, J. (1986). Compilers, Principle, Techniques, and Tools. Ad-

dision Wesely.

Black, E., Jelinek, F., Lafferty, J., Magerman, D. M., Mercer, R., and Roukos, S. (1993).

“Towards history-based grammars: using richer models for probabilistic parsing.” In

Proceedings of the 31st Annual Meeting of the Association for Computational Linguis-

tics, pp. 31–37.

Briscoe, T., and Carroll, J. (1993). “Generalized probabilistic LR parsing of natural language

(corpora) with unification-based grammars.” Computational Linguistics, 19 (1).

Carroll, J., and Briscoe, E. (1992). “Probabilistic normalization and unpacking of packed

parse forests for unification-based grammars..” In Proceedings, AAAI Fall Symposium

on Probabilistic Approaches to Natural Language, pp. 33–38.

Chapman, N. P. (1987). LR Parsing — Theory and Practice. Cambridge University Press.

Charniak, E. (1997). “Statistical parsing with a context-free grammar and word statistics.”

In Proceedings of the National Conference on Artificial Intelligence.

Collins, M. J. (1996). “A new statistical parser based on bigram lexical dependencies.” In

Proceedings of the 34th Annual Meeting of the Association for Computational Linguis-

tics.

Inui, K., Shirai, K., Tanaka, H., and Tokunaga, T. (1997a). “Integrated probabilistic language

modeling for statistical parsing.” In Summary Correction of the Poster Session of the

15th International Joint Conference on Aritifical Intelligence, p. 49.

Inui, K., Shirai, K., Tanaka, H., and Tokunaga, T. (1997b). “Integrated probabilistic language

modeling for statistical parsing.” Tech. rep. TR97-0005, Dept. of Computer Science,

Tokyo Institute of Technology. Available from http://www.cs.titech.ac.jp/tr.html.

Inui, K., Sornlartlamvanich, V., Tanaka, H., and Tokunaga, T. (1997c). “A new

49

Journal of Natural Language Processing Vol. 5 No. 3 July 1998

probabilistic LR language model for statistical parsing.” Tech. rep. TR97-0004,

Dept. of Computer Science, Tokyo Institute of Technology. Available from

http://www.cs.titech.ac.jp/tr.html.

Kita, K. (1994). “Spoken sentence recognition based on HMM-LR with hybrid language mod-

eling.” IEICE Trans. Inf. & Syst., E77-D(2).

Li, H. (1996). “A probabilistic disambiguation method based on psycholinguistic principles.” In

Proceedings of the Fourth Workshop on Very Large Corpora (WVLC-4). cmp-lg/9606016.

Li, H., and Tanaka, H. (1995). “A method for integrating the connection constraints into an

LR table.” In Proceedings of Natural Language Processing Pacific Rim Symposium ’95,

pp. 703–708.

Magerman, D. M., and Marcur, M. (1991). “Pearl: A probabilistic chart parser.” In Proceed-

ings of the 5th Conference of European Chapter of the Association for Computational

Linguistics, pp. 15–20.

Schabes, Y. (1992). “Stochastic lexicalized tree-adjoining grammars.” In Proceedings of the

14th International Conference on Computational Linguistics, Vol. 2, pp. 425–432.

Sekine, S., and Grishman, R. (1995). “A Corpus-based probabilistic prammar with only two

non-terminals.” In Proceedings of the International Workshop on Parsing Technologies

’95.

Shirai, K., Inui, K., Tanaka, H., and Tokunaga, T. (1997). “An empirical study on statistical

disambiguation of Japanese dependency structures using a lexically sensitive language

model.” In Proceedings of Natural Language Pacific-Rim Symposium, pp. 215–220.

Sornlartlamvanich, V., Inui, K., Shirai, K., Tanaka, H., Tokunaga, T., and Takezawa, T.

(1997a). “An empirical evaluation of probabilistic GLR parsing.” In Proceedings of

Natural Language Pacific-Rim Symposium, pp. 169–174.

Sornlartlamvanich, V., Inui, K., Shirai, K., Tanaka, H., Tokunaga, T., and Takezawa, T.

(1997b). “Incorporating probabilistic parsing into an LR parser – LR table engineer-

ing (4) –.” Information Processing Sciety of Japan, SIG-NL-119. Available from

http://tanaka-www.cs.titech.ac.jp/.

Su, K.-Y., Wang, J.-N., Su, M.-H., and Chang, J.-S. (1991). “GLR parsing with scoring.” In

Tomita (1991), chap. 7.

Tomita, M. (1986). An Efficient Parsing for Natural Languages. Kluwer, Boston, Mass.

Tomita, M. (Ed.). (1991). Generalised LR Parsing. Kluwer Academic Publishers.

Wright, J. H., and Wrigley, E. N. (1991). “GLR parsing with probability.” In Tomita (1991),

chap. 8.

50

Inui, K. et al. Probabilistic GLR Parsing

Appendix

A A brief proof of the mutual exclusiveness between Ss and Sr

It is obvious from the algorithm for generating an LR(1) goto graph(Aho et al. 1986) that,

for each state s (6= s0), if there exist states si and sj whose goto transitions on symbol Xi

and Xj , respectively, both lead to s, then Xi = Xj . Namely, for any given state s, the symbol

X required to reach s by way of a goto transition is always uniquely specified. On the other

hand, if the current state is in Ss , then it should have been reached through a goto transition

on a certain terminal symbol X ∈ Vt , whereas, if the current state is in Sr , then it should

have been reached through a goto transition on a certain nonterminal symbol X ∈ Vn . Given

these facts, it is obvious that Ss and Sr are mutually exclusive.

B An LALR-based model

Let us consider equation (1) again. In this equation, we implicitly assume the range of T

to be all the possible parse tree candidates, i.e. the set of all the complete and acceptable stack

transition sequences, which we refer to as T acc. Thus, the second factor P (T) in equation (1)

should be interpreted as a distribution over T acc such that:

∑

T∈T acc

P (T) = 1

However, what is estimated by a PGLR model PPGLR(T) is not a distribution over T acc but

that over T , which is the set of all the possible complete transition sequences — whether

acceptable or rejected —, such that:

∑

T∈T
PPGLR(T) = 1

Obviously, this difference does not matter in the case of a CLR-based model, since T acc = T .

On the other hand, if one considers an LALR-based model, since there may be rejected tran-

sition sequences in T , T acc ⊆ T . In spite of this, however, one can still rank complete and

acceptable stack transition sequences using a PCFG model PPGLR(T), since P (T) can be

estimated using PPGLR(T) as follows:

P (T) =


 ∑

T∈T acc

PPGLR(T)



−1

· PPGLR(T)

where the first factor is a constant that is independent of T , and thus can be neglected in

ranking T . To conclude, one can rank the parse tree candidates for any given input sentence

51

Journal of Natural Language Processing Vol. 5 No. 3 July 1998

according to PPGLR(T) and P (W |T), whether one bases the model on CLR, LALR, or even

LR(0) (i.e. SLR).

INUI Kentaro: He is an associate professor of Department of Artificial In-

telligence, Kyushu Institute of Technology. He received the B.S. degree in

1990 from Tokyo Institute of Technology, and the M.S. and the Dr. Eng.

degrees from Tokyo Institute of Technology in 1992 and 1995, respectively.

His work focuses on natural language processing.

Virach SORNLERTLAMVANICH: He is a Ph.D. student of Depart-

ment of Computer Science, Tokyo Institute of Technology. He received the

B.E. and M.E. degrees from Kyoto University, in 1984 and 1986, respec-

tively. In 1988, he joined NEC Corporation, and was involved in the Multi-

lingual Machine Translation Project supported by MITI until 1992. In 1992,

he joined the National Electronics and Computer Technology (NECTEC) of

Thailand as a chief researcher of Linguistics and Knowledge Science Labo-

ratory (LINKS). His research interests are natural language processing and

information retrieval.

TANAKA Hozumi: He is a professor of Department of Computer Science,

Tokyo Institute of Technology. He received the B.S. degree in 1964 and the

M.S. degree in 1966 from Tokyo Institute of Technology. In 1966 he joined

in the Electro Technical Laboratories, Tsukuba. He received the Dr. Eng.

degree in 1980. He joined in Tokyo Institute of Technology in 1983. He

has been engaged in artificial intelligence and natural language processing

research.

TOKUNAGA Takenobu: He is an associate professor of Graduate School

of Information Science and Engineering, Tokyo Institute of Technology. He

received the B.S. degree in 1983 from Tokyo Institute of Technology, the

M.S. and the Dr. Eng. degrees from Tokyo Institute of Technology in 1985

and 1991, respectively. His current interests are natural language processing

and information retrieval.

(Received August 20, 1997)

(Revised January 30, 1998)

(Accepted April 10, 1998)

52

