
Journal of Natural Language Processing Vol. 2 No. 2

Integration of Morphological and Syntactic Analysis
based on LR Parsing Algorithm

Tanaka Hozumi,† Tokunaga Takenobu† and Aizawa Michio††

Morphological analysis of Japanese is very different from that of English, because
no spaces are placed between words. This is also the case in many Asian languages
such as Korean, Chinese, Thai and so forth. In the Indo-European family, some lan-
guages such as German have the same phenomena in forming complex noun phrases.
Processing such languages requires the identification of the word boundaries in the
first place. This process is often called segmentation. Segmentation is a very im-
portant process, since the wrong segmentation causes fatal errors in the later stages
such as syntactic, semantic and contextual analysis. However, correct segmentation
is not always possible only with morphological information. Syntactic, semantic and
contextual information are also necessary to resolve the ambiguities in segmentation.
This paper proposes a method to integrate the morphological and syntactic analysis
based on LR parsing algorithm. An LR table derived from grammar rules is modified
on the basis of connectabilities between two adjacent words. The modified LR table
reflects both the morphological and syntactic constraints. Using the LR table and
the generalized LR parsing algorithm, efficient morphological and syntactic analysis
is available.

KeyWords: Generalized LR parsing, Morphological analysis, Syntactic analysis

1 Introduction

Morphological analysis of Japanese is very different from that of English, because no spaces

are placed between words. This is also the case in many Asian languages such as Korean, Chi-

nese, Thai and so forth. In the Indo-European family, some languages such as German have

the same phenomena in forming complex noun phrases. Processing such languages requires

the identification of the word boundaries in the first place. This process is often called seg-

mentation. Segmentation is one of the most important tasks of morphological analysis for

these languages, since the wrong segmentation causes fatal errors in the later stages such as

syntactic, semantic and contextual analysis. However, correct segmentation is not always pos-

sible only with morphological information. Syntactic, semantic and contextual information

are also necessary to resolve the ambiguities in segmentation.

Over the past decades a number of studies have been made on the morphological and

† Department of Computer Science, Tokyo Institute of Technology

†† Media Technology Laboratory, Canon Inc.

59

Tanaka, H. et al. Integration of Morphological and Syntactic Analysis

syntactic analysis of Japanese. From the viewpoint of two kinds of integration, description of

constraints and processing, they would be classified into the following three approaches. The

relation of these approaches is illustrated in Figure 1.

�
Integration Separation

�

Separation

Description of constraints

Processing

Cascade

Interleave

MSLR
Single Framework
(CFG) (ACFG)

Figure 1 Relation of approaches

Cascade: Separate the morphological and syntactic analysis and execute them in a cascade

manner. The morphological and syntactic constraints are represented separately.

Interleave: Separate the morphological and syntactic analysis and execute them interleav-

ingly. The morphological and syntactic constraints are represented separately.

Single Framework: Represent both the morphological and syntactic constraints in a sin-

gle framework such as context free grammars (CFGs) and make no distinction between

the two analysis.

Representing the morphological and syntactic constraints separately as in the first two

approaches, Cascade and Interleave, makes maintaining and extending the constraints eas-

ier. This is an advantage of these approaches. Many natural language processing systems

have used these two approaches. For example, Mine et al. proposed a method to represent the

morphological constraints in regular grammar and the syntactic constraints in CFG, and inter-

leave the morphological and syntactic analysis (Mine, Taniguchi, and Amamiya 1991). Most

other systems use a connection matrix instead of regular grammar (Miyazaki 1984; Sugimura,

Akasaka, Kubo, and Matsumoto 1988). The main drawbacks of these approaches would be

summarized as follows:

• It may require two different algorithms for each analysis.

• It must retain all ambiguities from the morphological analysis until the syntactic anal-

60

Journal of Natural Language Processing Vol. 2 No. 2

ysis begins. This wastes memory space and computing time.

On the other hand, from a viewpoint of processing, it is preferable to integrate the mor-

phological and syntactic analysis into a single framework, since some syntactic constraints are

useful for morphological analysis and vice versa. The last approach fulfills this requirement.

There have been several attempts to develop CFG that covers both the morphological and

syntactic constraints (Kita 1992; Sano and Fukumoto 1992). However, it is empirically difficult

to describe both constraints by using only CFG. In order to have CFG rules include morpho-

logical constraints, nonterminal symbols have to bear the morphological attributes which are

used for checking connectabilities between morphemes. In other words, nonterminals should

be more precisely subcategorized. This increases the number of nonterminals and thus that

of grammar rules.

�
��

�
��

B

wi
�
��

�
��

C

wi+1

�
��

�
��

A

Figure 2 Connectability check by CFG

Using augmented context free grammar (ACFG) instead of CFG may remedy this problem.

However, this may cause the delay of connectability checking. For example, in Figure 2, in

order to check the connectability between adjacent words, wi and wi+1, the morphological

attributes of each word should be propagated up to their mother nodes B and C, and the

check is delayed until the application of the rule A → B C.

By using connection matrices for morphological analysis as in the Cascade/Interleave ap-

proaches, connectability checks between adjacent words is performed very easily. Therefore,

it is desirable to represent the morphological and syntactic constraints separately as in Cas-

cade/Interleave, and to integrate the execution of both analysis into a single process as in

Single Framework. Our method has captured these advantages by representing the mor-

phological constraints in connection matrices and the syntactic constraints in CFGs, then

compiling both constraints into an LR table (Aho, Ravi, and Ullman 1986). The already

existing efficient LR parsing algorithms would be used with minor modifications, enabling us

to utilize both the morphological and syntactic constraints at the same time. Our approach,

called MSLR (Morpho-Syntactic LR), locates at the right bottom of the map in Figure 1,

which is the most preferable position.

61

Tanaka, H. et al. Integration of Morphological and Syntactic Analysis

In the next section, we first give a brief introduction to Japanese morphological analysis

using an example sentence. In section 3, we describe the method of generating an LR table

from a connection matrix and CFG rules, then in section 4 we explain the parsing algorithm.

Our algorithm is principally the same as Tomita’s generalized LR parsing algorithm (Tomita

1986). The only difference is that the input is not a sequence of preterminals, but a sequence

of characters.

2 Morphological analysis of Japanese

A simple Japanese sentence consists of a sequence of postpositional phrases (PPs) followed

by a predicate. The PP consists of a noun phrase (NP) followed by a postposition which

indicates the case role of the NP. The predicate consists of a verb or an adjective, optionally

followed by a sequence of auxiliary verbs (Morioka 1987)).

We illustrate the Japanese morphological analysis with an example sentence “かおるにあい

ます (meet Kaoru).” We use a simple Japanese dictionary shown in Figure 3, and a connection

matrix shown in Figure 4 which gives us the connectabilities between adjacent morphological

categories (mcat). For example in Figure 4, the symbol “o” at the intersection of row 2 (p1)

and column 3 (vsk) indicates that the morphological category vsk can immediately follow the

morphological category p1.

entry cat mcat meaning
かお n n1 face
かおる n n1 person’s name
に p p1 (dative)
あ vs vsk open
き ve ve2

k (connect to verb)
い ve ve2i

k (connect to verb)
く ve ve3

k (connect to nominal)
あ vs vsw meet
い ve ve2

w (connect to verb)
っ ve ve2t

w (connect to verb)
く ve ve3

w (connect to nominal)
かお vs vsr smell sweet
り vs ve2

r (connect to verb)
っ ve ve2t

r (connect to verb)
る ve ve3

r (connect to nominal)
ます ax ax1 (polite form)
た ax ax2 (past form)

n noun
p case marker
vs verb stem
ve verb ending
ax auxiliary verb

Figure 3 An example of Japanese dictionary

62

Journal of Natural Language Processing Vol. 2 No. 2

R I G H T
n1 p1 vsk vsr vsw ve2

k ve2i
k ve3

k ve2
w ve2t

w ve3
w ve2

r ve2t
r ve3

r ax1 ax2 $

n1 o

p1 o o o

vsk o o o

vsw o o o

vsr o o o

L ve2
k o

E ve2i
k o

F ve3
k o o

T ve2
w o

ve2t
w o

ve3
w o o

ve2
r o

ve2t
r o

ve3
r o o

ax1 o

ax2 o

Figure 4 An example of a connection matrix

Using only the dictionary, we would obtain the following twelve candidates of segmentation

for the sentence “かおるにあいます．”

かお る に あ い ます

(1) n1 ve3
r p1 vsk ve2i

k ax1

(2) n1 ve3
r p1 vsk ve2

w ax1

(3) n1 ve3
r p1 vsw ve2i

k ax1

(4) n1 ve3
r p1 vsw ve2

w ax1

(5) vsr ve3
r p1 vsk ve2i

k ax1

(6) vsr ve3
r p1 vsk ve2

w ax1

(7) vsr ve3
r p1 vsw ve2i

k ax1

(8) vsr ve3
r p1 vsw ve2

w ax1

かおる に あ い ます

(9) n1 p1 vsk ve2i
k ax1

(10) n1 p1 vsk ve2
w ax1

(11) n1 p1 vsw ve2i
k ax1

(12) n1 p1 vsw ve2
w ax1

By also referring to the connection matrix, we would be able to filter out illegal segmentations.

From the examples above, we find (1)–(4) violate the connectability between “かお (n1)” and

“る (ve3
r)”, and that (5)–(8) violate the connectability between “ る (ve3

r)” and “に (p1).”

Also (9) and (11) violate the connectability between “い (ve2i
k)” and “ます (ax1)”, and (11)

violates the connectability between “あ (vsw)” and “い (ve2i
k).” Thus by eliminating the ille-

gal candidates we obtain the morphologically correct candidate, (12). A long input sentence

generally gives ambiguities which need to be resolved in later stages using syntactic, semantic

and contextual information.

63

Tanaka, H. et al. Integration of Morphological and Syntactic Analysis

3 Generating LR table

Connection matrices and CFG rules have been used for morphological analysis and syn-

tactic analysis respectively by most Japanese processing systems. Because CFG rules were

mainly used for syntactic analysis and connection matrices for morphological analysis, they

have been developed independently of each other.

In this section, we propose a method to integrate morphological and syntactic con-

straints in the framework of LR parsing algorithm, and thus capturing the advantages of

Cascade/Interleave and Single Framework described in section 1.

In order to combine connection matrices and CFG rules, the first step we have to take

is to extend the CFG rules by relating the syntactic categories in the CFG rules with the

morphological categories in a connection matrix. This is realized by adding CFG rules called

morphological rules each of which is a unit production rule with a syntactic category in the

LHS and a morphological category in the RHS.

s → v (1) v → vs ve (4)

s → v ax (2) pp → n p (5)

s → pp s (3)

Figure 5 An example of CFG for Japanese

n → n1 (6) ve → ve2
w (14)

p → p1 (7) ve → ve2t
w (15)

vs → vsk (8) ve → ve3
w (16)

vs → vsw (9) ve → ve2
r (17)

vs → vsr (10) ve → ve2t
r (18)

ve → ve2
k (11) ve → ve3

r (19)

ve → ve2i
k (12) ax → ax1 (20)

ve → ve3
k (13) ax → ax2 (21)

Figure 6 A morphological rules derived from the dictionary in Figure 3

Let us take an exmaple CFG rules shown in Figure 5. From the dictionary shown in Fig-

ure 3, we would extract a set of new CFG rules as shown in Figure 6, which are simply added

to the CFG rules in Figure 5 to get an extended set of CFG rules.

We would generate an LR table as shown in Figure 7 from the extended CFG rules (1)

through (21) from Figure 5 and 6. Note that the extended CFG rules do not include any infor-

mation about connectability represented in the connection matrix in Figure 4. For example,

rules (4), (10) and (14) allow the structure “[v [vs vsr],[ve [ve2
w]]]” which violates the

connectability between vsr and ve2
w with respect to Figure 4.

64

Journal of Natural Language Processing Vol. 2 No. 2

A C T I O N

state n1 vsk vsw vsr ax1 ax2 ve2
k ve2i

k ve3
k ve2

w ve2t
w ve3

w ve2
r ve2t

r ve3
r p1 $

0 s6 s7 s8 s9

1 acc

2 s11 s12 r1

3 s6 s7 s8 s9

4 s15 s16 s17 s18 s19 s20 s21 s22 s23

5 s25

6 r6

7 r8 r8 r8 r8 r8 r8 r8 r8 r8

8 r9 r9 r9 r9 r9 r9 r9 r9 r9

9 r10 r10 r10 r10 r10 r10 r10 r10 r10

10 r2

11 r20

12 r21

13 r3

14 r4 r4 r4

15 r11 r11 r11

16 r12 r12 r12

17 r13 r13 r13

18 r14 r14 r14

19 r15 r15 r15

20 r16 r16 r16

21 r17 r17 r17

22 r18 r18 r18

23 r19 r19 r19

24 r5 r5 r5 r5

25 r7 r7 r7 r7

G O T O

state s v pp vs n ax ve p

0 1 2 3 4 5

1

2 10

3 13 2 3 4 5

4 14

5 24

Figure 7 LR table generated from rules (1)–(21)

The second step is to introduce the constraints on connectability into the LR table by delet-

ing illegal reduce actions. This is carried out by modifying the LR table with the procedure

shown in Figure 8.

65

Tanaka, H. et al. Integration of Morphological and Syntactic Analysis

For each reduce action A with a morphological rule in the LR table {
if (Not Connect(RHS (Rule(A)), LA(A)) {

delete A from the entry;

}
}
where each function is defined as follows:

Rule : action → rule;

returns a rule used by the reduce action.

LA : action → symbol;

returns a look ahead symbols of the action.

Connect : symbol × symbol → {T, F};
returns true or false with respect to the connectability of the two symbols.

RHS : rule → symbol;

returns a right hand side symbol of the rule.

Figure 8 A procedure to modify an LR table

Deleting reduce actions by applying the above procedure prohibits the application of mor-

phological rules which violates the connectability between two adjacent words, namely the

current scanned word and its lookahead word. Note that given an LR table and a connection

matrix, this procedure can be performed automatically without human intervention.

It is possible to incorporate this procedure into the LR table generation process, however,

it is better to keep them separate. Since this procedure is applicable to any type of LR table,

separating this process from LR table generation enables us to use the already existing LR

table generation program.

For example, in Figure 7, the reduce action r8 in state 7 and column ve3
r is deleted, since

the connection between vsk, the RHS of rule (8), and ve3
r, the lookahead symbol, is prohib-

ited with respect to the connection matrix in Figure 4. Similarly, reduce action r8 in state 7

and column ve2
w will be deleted and so forth. The reduce actions which should be deleted is

enclosed in Figure 7. The overview of generating a modified LR table is shown in Figure 9.

Generally speaking, the size of the LR table is on the exponential order of the number of

rules in the grammar. Introducing the morphological rules into the syntactic rules can cause

an increase in the number of states in the LR table, thereby exponentially increasing the size

of the overall LR table in the worst case. In our method, the increase of the number of states

66

Journal of Natural Language Processing Vol. 2 No. 2

is equal to that of the morphological rules introduced. Suppose we add a morphological rule

X → x to the grammar. Only the items in the form of [A → α · Xβ] would produce a single

new item [X → ·x] from which only a single new state {[X → x·]} would be created. Thus

the increase of the number of the states is equal to that of the morphological rules introduced,

and the size of the LR table will not grow exponentially.

dictionary

syntactic
rules (CFG)

morphological
rules (CFG)

connection
matrix

LR table

modified LR table

�

�

�

� �

��

Figure 9 Outline of generating a modified LR table

4 Algorithm

The LR parsing algorithm with the modified LR table is principally the same as Tomita’s

generalized LR parsing algorithm. The only difference is that Tomita’s algorithm assumes a

sequence of preterminals as an input, while our algorithm assumes a sequence of characters.

Thus the dictionary reference process needs to be slightly modified. Figure 10 illustrates the

outline of our parsing algorithm.

In Figure 10 the stage number (CS) indicates how many characters have been processed.

The procedure begins at stage 0 and ends at stage N, the character length of an input sen-

tence. In stage 0, the stack is initialized and only the node with state 0 exists (step (1)). In

the outer-most loop (2)–(14), each stack top in the current stage is selected and processed.

In step (4), the dictionary is consulted and look-ahead symbols are obtained. An important

point here is that look-ahead symbols may have different character lengths. A new node is

introduced by a shift action at step (8) and is placed into a stage which is ahead of the current

stage by the length of the look-ahead word.

67

Tanaka, H. et al. Integration of Morphological and Syntactic Analysis

(1) initialize stack

(2) for CS = 0 . . . N {
(3) for each stack top node in stage CS {
(4) Look-aheads = lookup-dictionary(CS);

(5) for each look ahead preterminal LA in Look-aheads {
(6) do reduce while “reduce” is applicable;

(7) if “shift” is applicable {
(8) do shift creating a new node in stage (CS + length(LA));

(9) }
(10) if “acc” { accept }
(11) if no action { reject }
(12) }
(13) }
(14) }

Figure 10 Outline of the parsing algorithm

5 A worked example

The following example well illustrates the algorithm in Figure 10. The input sentence is

“かおるにあいます$ ” (meet Kaoru). We assign position numbers between adjacent characters.

Input: か お る に あ い ま す ＄

Position: 0 1 2 3 4 5 6 7 8 9

In the following trace, the numbers in circles denote state numbers, and the numbers in

squares denote the subtree number. The symbols enclosed by curly brackets denote a look

ahead symbol followed by the next applicable action, separated by a slash (/). The stage

numbers are shown below the stacks.

Stage: 0
Dictionary reference:

[n1, “かお”] at 0–2

[vsr, “かお”] at 0–2

[n1, “かおる”] at 0–3
We find three look ahead symbols, n1, vsr, and n1 by consulting the dictionary in Figure 3.

A shift actions is applied for each of them according to the LR table in Figure 7.

68

Journal of Natural Language Processing Vol. 2 No. 2

0

�
�
�
�0

{
n1/s6
vsr/s9
n1/s6

}

After the shift actions, three new nodes are created at stage 2 or stage 3 depending on the

length of look ahead words. At the same time subtrees 1 – 3 are constructed. The current

stage is updated from 0 to 2, since there is no node in stage 1. The look ahead symbols are

unknown at this moment.

0 1 2 3

����0
1
����6

2
����9

3
����6

{?}
{?}
{?}

1 : [n1, “かお”]
2 : [vsr, “かお”]
3 : [n1, “かおる”]

Stage: 2
Dictionary reference:

[ve3
r, “る”] at 2–3

Dictionary reference gives one look ahead symbol from position 2. Since the current stage

number is 2, only the first two stack tops are concerned at this stage. No action is taken of

the first stack, because the LR table has no action in the entry for state 6 and a look ahead

symbol ve3
r. As the result, the first stack is rejected. The reduce action (r10) is taken for the

second stack.

0 1 2 3

����0
1
����6

2
����9

3
����6

{ve3
r/err}

{ve3
r/r10}

{?}

After r10, a shift action (s23) is carried out for the first stack.

0 1 2 3

����0 4
����4

3
����6

{ve3
r/s23}

{?}
4 : [vs, 2]

After s23, we would proceed to stage 3.

0 1 2 3

����0 4
����4 5

����23

3
����6

{?}
{?}

5 : [ve3
r, “る”]

Stage: 3
Dictionary reference:

[p1, “に”] at 3–4
We obtain symbol p1 by consulting the dictionary. Because the first stack can take no more

action, it is rejected. The reduce action (r6) is then applied to the second stack.

69

Tanaka, H. et al. Integration of Morphological and Syntactic Analysis

0 1 2 3

����0 4
����4 5

����23

3
����6

{p1/err}
{p1/r6}

The shift action (s25) is applied to the following stack.

0 1 2 3

����0 6
����5 {p1/s25}

6 : [n, 3]

After the shift action (s25), new nodes are created in stage 4.

0 1 2 3 4

����0 6
����5 7

����25 {?}
7 : [p1, “に”]

Stage: 4
Dictionary reference:

[vsk, “あ”] at 4–5

[vsw, “あ”] at 4–5
Dictionary reference provides two look ahead symbols for the next word.

0 1 2 3 4

����0 6
����5 7

����25

{
vsk/r7
vsw/r7

}

After the two reduce actions (r7), we get two nodes with the same state 24, and they would

be merged. This is possible because these two reduce actions give the same structure as well.

If the structures are different, we would not able to merge the stacks. We would see such an

example later at stage 5.

0 1 2 3 4

����0 6
����5 8

����24

{
vsk/r5
vsw/r5

}
8 : [p, 7]

The process in stage 4 continues as follows.

0 1 2 3 4

����0 9
����3

{
vsk/s7
vsw/s8

}
9 : [pp, 6 , 8]

0 1 2 3 4 5

����0
10
����7

9
����3 11

����8
{?}
{?} 10 : [vsk, “あ”]

11 : [vsw, “あ”]

70

Journal of Natural Language Processing Vol. 2 No. 2

Stage: 5
Dictionary reference:

[ve2i
k , “い”] at 5–6

[ve2
w, “い”] at 5–6

We have two look ahead symbols for each stack top. The reduce actions (r8 and r9) are

performed.

0 1 2 3 4 5

����0
10
����7

9
����3 11

����8

{
ve2i

k /r8
ve2

w/err

}
{

ve2i
k /err

ve2
w/r9

}

0 1 2 3 4 5

����0
12
����4

9
����3 13

����4
{ve2i

k /s16}
{ve2

w/s18} 12 : [vs, 10]
13 : [vs, 11]

Note that we are not able to merge the stack tops even with the same state 4 since the struc-

ture of 12 and 13 are different. If two stack tops are merged here and then different shift

actions (s16 and s18) are carried out, we might have invalid combinations of structure such

as (12 , 15) and (13 , 14).

0 1 2 3 4 5 6

����0
12
����4 14

����16

9
����3 13

����4 15
����18

{?}
{?} 14 : [ve2i

k , “い”]
15 : [ve2

w, “い”]

After the shift actions (s16 and s18), we proceed to stage 6.

Stage: 6
Dictionary reference:

[ax1, “ます”] at 6–8
The process in stage 6 proceeds as follows.

0 1 2 3 4 5 6

����0
12
����4 14

����16

9
����3 13

����4 15
����18

{ax1/err}
{ax1/r14}

0 1 2 3 4 5 6

����0 9
����3 12

����4 16
����14 {ax1/r4}

16 : [ve, 15]

0 1 2 3 4 5 6

����0 9
����3 17

����2 {ax1/s11}
17 : [v, 12 , 16]

71

Tanaka, H. et al. Integration of Morphological and Syntactic Analysis

0 1 2 3 4 5 6 7 8

����0 9
����3 17

����2 18
����11 {?}

18 : [ax1, “ます”]

Stage: 8
Dictionary reference:

“$” at 8–9

0 1 2 3 4 5 6 7 8

����0 9
����3 17

����2 18
����11 {$/r20}

0 1 2 3 4 5 6 7 8

����0 9
����3 17

����2 19
����10 {$/r2}

19 : [ax, 18]

0 1 2 3 4 5 6 7 8

����0 9
����3 20

����13 {$/r3}
20 : [s, 17 , 19]

The input sentence is automatically segmented and accepted, giving a final parse result 21 as

shown in Figure 11.

0 1 2 3 4 5 6 7 8

����0 21
����1 {$/acc}

21 : [s, 9 , 20]

かおる に あ い ます

n1 p1 vsw ve2
w ax1

vs ve

n p v ax

pp s

s

�� ��

�� �� ��
�

		
	

���
��

Figure 11 An analysis of “かおるにあいます”

6 Conclusion

We have proposed a method representing the morphological constraints in connection ma-

trices and the syntactic constraints in CFGs, then compiling both constraints into an LR table.

The compiled LR table enables us to make use of the already existing, efficient generalized LR

parsing algorithms through which integration of both morphological and syntactic analysis is

obtained.

72

Journal of Natural Language Processing Vol. 2 No. 2

Advantages of our approach would be summarized as follows:

• Morphological and syntactic constraints are represented separately, and it makes easier

to maintain and extend them.

• The morphological and syntactic constraints are compiled into a uniform representa-

tion, an LR table. We can use the already existing efficient algorithms for generalized

LR parsing for the analysis.

• Both the morphological and syntactic constraints can be used at the same time during

the analysis.

We have implemented our method using the EDR dictionary with 300,000 words (EDR

1993) from which 437 morphological rules are derived. This means only 437 new states are

introduced to LR table and this does not cause an explosion in the size of the LR table.

The method proposed in this paper is also applicable to integrate phonological and syntactic

analysis. The detail is described elsewhere (Tanaka, Li, and Tokunaga 1994).

Reference

Aho, A., Ravi, S., and Ullman, J. (1986). Compilers, Principle, Techniques, and Tools. Ad-

dision Wesely.

Japan Electronic Dictionary Research Institute (1993). EDR Dictionary Manual.

Kita, K. (1992). A Study on Language Modeling for Speech Recognition. Ph.D. thesis, Waseda

University.

Mine, T., Taniguchi, R., and Amamiya, M. (1991). “Coordinated Morphological and Syntactic

Analysis of Japanese Language.” In Proceedings of IJCAI’91, pp. 1012–1017.

Miyazaki, M. (1984). “An Automatic Segmentation Method for Compound Words using De-

pendency Analysis.” Transactions of Information Processing Society of Japan, 25 (6),

970–979.

Morioka, K. (1987). Formation of a Vocabulary. Meizi-syoin.

Sano, H., and Fukumoto, F. (1992). “On a Grammar Formalism, Knowledge Bases and Tools

for Natural Language Processing in Logic Programming.” In Proceedings of FGCS’92.

Sugimura, R., Akasaka, K., Kubo, Y., and Matsumoto, Y. (1988). “Logic Based Lexical

Analyzer LAX.” In Logic Programming ’88. Springer-Verlag.

Tanaka, H., Li, H., and Tokunaga, T. (1994). “Incorporation of Phoneme-Context-Dependence

in LR Table through Constraint Propagation Method.” In Proceedings of the Integration

of Natural Language and Speech Processing, pp. 15–22.

Tomita, M. (1986). An Efficient Parsing for Natural Languages. Kluwer, Boston, Mass.

73

Tanaka, H. et al. Integration of Morphological and Syntactic Analysis

Tanaka Hozumi: He is a professor of Department of Computer Science,

Tokyo Institute of Technology. He received the B.S. degree in 1964 and the

M.S. degree in 1966 from Tokyo Institute of Technology. In 1966 he joined

in the Electro Technical Laboratories, Tsukuba. He received the Dr. Eng.

degree in 1980. He joined in Tokyo Institute of Technology in 1983. He

has been engaged in artificial intelligence and natural language processing

research.

Tokunaga Takenobu: He is an associate professor of Department of Com-

puter Science, Tokyo Institute of Technology. He received the B.S. degree

in 1983 from Tokyo Institute of Technology, the M.S. and the Dr. Eng.

degrees from Tokyo Institute of Technology in 1985 and 1991, respectively.

His current interests are natural language processing, information retrieval.

Aizawa Michio: He is a researcher at Media Technology Laboratory, Canon

Inc. He received the B.S. degree in 1991 from Tokyo Institute of Technology,

the M.S. degrees from Tokyo Institute of Technology in 1993. His current

interest is natural language processing.

(Received September 26, 1994)

(Revised December 22, 1994)

(Accepted January 13, 1995)

74

