Natural Language Processing Pacific Rim Symposium 95

A Method for Integrating the Connection Constraints
into an LR Table

LI Hui and TANAKA Hozumi
Department of Computer Science
Tokyo Institute of Technology
2-12-1 Qokayama, Meguro, Tokyo 152, Japan
{1, tanaka}@cs.titech.ac.jp

" Abstract

This paper presents an algorithm for in-
tegrating local constraints, in the form
of a connection matrix, into an LR pars-
ing table generated from a set of CFG
rules. The algorithm first incorporates
connection constraints into the genera-
tion process of LR items to construct an
initial LR table, and then modifies the
initial LR table through constraint prop-
agation. With this algorithm, an LR ta-
ble that compiles both global constraints
in CFG and local constraints in a con-
nection matrix can be constructed effi-
ciently.

1 Introduction

Generalized LR(GLR) parsing technique (Tomita,
1986) has been widely used to parse context-free
grammars (CFGs), in natural language process-
ing. 'Recently, GLR parsing has also been suc-
cessfully applied in continuous speech recognition
to provide grammatical constraints (Kita et al.,
1989).

CFGs, as a global constraint, are usually used
for syntactic analysis. In addition to global con-
straints, local constraints are also used in some
applications. For example, in natural language
processing, the morphological analysis of many
Asian languages, such as Japanese, Chinese and
Korean, is very different from that of English, be-
cause no spaces are placed between words. For
these languages, the local constraint between two
adjacent words is often used for morphological
analysis. In order to integrate the morphological

and syntactic analyses, a method that combines
both morphological constraints and syntactic con-
straints(CFGs) into a GLR parsing has been pro-
posed (Tanaka et al., 1993).

As an another example, in continuous speech
recognition, the search space can be reduced
by way of grammatical constraints based on
CFGs (Kita et al., 1989). On the other hand.
phoneme-context-dependent phone models (allo-
phone models) can be used to improve the recog-
nition accuracy with the connection constraint
between two allophones represented in a connec-
tion matrix. Compiling both grammatical coun-
straints and allophonic constraints into GLR pars-
ing will enable us to drive an allophone-based
speech recognition system by way of GLR pars-
ing (Nagai et al., 1993)(Tanaka et al., 1994).

The GLR parser is guided by an LR parsing ta-
ble (Aho et al., 1986), which is automatically cre-
ated from CFGs, and proceeds left-to-right with-
out backtracking. The heart of the LR parsing
technique is the parse table construction algo-
rithm, which is the most complex and compu-
tationally expensive aspect of LR parsing. For
a GLR parser that integrates both grammatical
and connective constraints, an LR parsing ta-
ble that combines both grammatical and connec-
tive constraints is necessary in order to use the
usual GLR parsing methods such as Tomita’s al-
gorithm (Tomita, 1986).

We have previously proposed a method. called
CPM(constraint propagation method), for gener-
ating an LR table that incorporated the local con-
straint in the form of a connection matrix (Tanaka
et al., 1994). In CPM, the LR table is constructed
in two steps: 1) An initial LR table from the given
CFGsis generated; 2) The initial LR table is mod-

—703—

ified by using the given connection matrix through
constraint propagation. The major problem with
CPM is that for a large scale grammar, the explo-
sion of the initial LR table size may occur.

In this paper, we propose a method to integrate
local constraints, represented in the form of a con-
nection matrix, into the generation process of the
initial LR table. By using this method, the explo-
sion of the initial LR table size can be avoided.

In the following sections, we first describe the
language model used in this paper. We then point
out the drawbacks of the CPM method, and de-
scribe an algorithm to incorporate connection con-
straints into the generation process of an LR table.
Finally, experimental results of LR table genera-
tion are presented.

2 CFG and Connection Matrix

A ‘“context-free grammar(CFG)” is a 4-tuple
G =< Vn,V7,P,§ >, where Vy is a nontermi-
nal symbol set including the start symbol S, Vr is
a terminal symbol set, and P is a set of produc-
tion rules each of which is of form < 4 — a >,
with A € Vy, a e (VyU Vr).

Fig. 1 shows an artificial CFG, G;, where Vy =
{S,X,Y,A,B,C} and Vr = {al,a2,b1,b2,cl,c2}
correspond to the nonterminal and terminal sym-
bol set, respectively.

(1) S=XY (6) A—a2
(2) X=A () B-bl
(3) X—AB (8 B-—b2
(4) Y=blC (9) C—cl
(5) A—al (10) C—c2

Figure 1: An example of CFG rules

The connection constraint between two termi-
nal symbols can be represented in a connection
matrix, which is of the form:

1 if b can follow a

Connect(a, b) = { 0 if b can not follow a

(1)
where a, b€ Vr.

Fig. 2 shows an example of a connection matrix
for the terminal symbols of Fig. 1.

Certainly, connection constraints can be incor-
porated into an CFG through introducing new
nonterminal symbols and modifying the original
CFG rules. For example, in Fig. 3, if {b;,i =
1,.-+,I} corresponds to the last functions of B,
and {¢;,j = 1,---,J} corresponds to the first
functions of C, in order to represent the con-

RIGHT

al a2 bl b2clc2 $
Lfaifooroooo
gl2looo1 000
bl{o 01 0010
Flalooo 1100
Tlcifo 000000
c2/0 000001

Figure 2: An example of a connection matrix

nectability between b; and ¢; in CFG, we should
introduce the new nonterminal symbols {B;,i =
1,---,I}, where B; corresponds to that B whose
last function is b;, and the new nonterminal sym-
bols {Cj,j = 1,---,J}, where C; correspounds to
that C whose first function is ¢;. The produc-
tion rule < A — B C > will become a set
of rules of the form {<'A — B; C; >. V B,.
C;, if b; and c; are connectable}. It is obvious
that for a large scale grammar, if the connection
constraint is integrated in this way, the explo-
sion of CFG rules, and consequently the explo-
sion of LR table size may occur. For example. for
a CFG with 1653 rules, after the connection con-
straint was integrated, the number of CFG rules
increased to 61507, and the number of LALR table
states increased from 12207 to 71030 (Nagai et al..
1993). Accordingly, for a large scale grammar. it
is impractical to incorporate the connection con-
straints into an CFG.

A

¢ X
AA

bi Cj

Figure 3: Connectability check by CFG

In fact, it is possible to integrate connection
constraints into the LR table, but not change the
CFGs. This can be done through modifying the
LR table generated from the CFGs by using con-
nection constraiats. Since no change occurs in the
CFG, the explosion of the CFGs and LR table size
will not occur. We will describe this method in the
next section.

~704—

To SS—+S.:$
SS=.S:$ bi Te

X-.A B;bl I3
XA :bl Al X=A.B:bl [b2 (]
A—.al ;bl X*>A.:bl +B =b2.;bl
*A->.al ;b2 B-—=.bl ;bl | p
+A~>. a2 ;bl «B —*.b2 ;bl 13
A~ a2 ;b2 S— X—+=A B.:;bl
—fx .
MY
Ig
Y—=+bl.C:$
«+C—*> .cl:$
C—+.c2:$%

Figure 4: LR(1) items for the grammar in Fig. 1

3 Integration of the connection
constraint into the LR table

In this section, we review the CPM (Tanaka et
al.,, 1994) and point out its problems, following
which we propose an algorithm to integrate con-
nection constraints into the generation process of
LR items.

8.1 CPM Method and its Problems

In CPM, given a set of CFG rules and a connec-
tion matrix between two terminal symbols, the LR,
table that combines both grammatical and con-
nective constraints is constructed in two steps:

1. From the given CFGs, an LR table, called the
initial LR table, is constructed.

2. On the basis of the given connection matrix,
the initial LR table is modified by deleting
all the illegal actions that violate connection
constraints.

In many applications, the connection matrix
tends to be a sparse matrix. In such a case, for
a large scale grammar, although CPM can use
the existing method to generate the initial LR
table, the explosion of the size of the initial LR
table may occur. For a grammar with 2655 CFG
rules which we used in a speech recognition sys-
tem, for instance, the necessary memory space
of the LALR table was about 25MB. The neces-
sary memory space usually increases very rapidly

with the size of the grammar. Therefore, in the
case of a large scale grammar, CPM is impractical
in terms of memory requirements. This problem
originates in the fact that connection constraints
are not considered when constructing the initial
LR table. One of the solutions to this problem
is modifying the algorithm of LR table genera-
tion, avoiding constructing any illegal items that
violate connection constraints, by using the given
connection matrix, that is, incorporating connec-
tion constraints into the generation process of LR
items. With this method, a large reduction in the
necessary memory for generating LR table can be
achieved.

For simplicity, we use the generation of LR(1)
items (corresponding to the canonical LR tahle)
as an example to illustrate our method.

3.2 Generation of LR(1) items with
connection constraint

3.2.1 LR(1) item

The generation of a canonical LR parsing table
is a two stage process which involves first the gen-
eration of a finite number of item sets from the
grammar, and second the generation of the action
table from these sets. An LR(1) item takes the
form < A — a- f, a >, where “a” is one of a list
of terminal symbols which can occur as the first
symbol immediately following the string derived
using the rule < A — a B > for that particular

—705—

state.
Fig. 4 shows the canonical collection of sets of
LR(1) items for the grammar in Fig. 1.

3.2.2 Algorithm for generating LR(1) items,
incorporating connection constrainis

The basic idea to incorporate connection con-
straints into the generation of LR(1) items is:
when a new item is to be added to an item set,
the connectability between it and the preceding or
succeeding symbol should be checked; if the con-
nection constraint is not fulfilled, this item will
not be added to the item set.

As we know, the items in an item set can be di--

vided into two classes: kernel items and nonkernel
items. The kernel items are from one or more pre-
ceding states by goto functions, and the nonkernel
items are created from the kernel items.

For an item set I, we define the preceding sym-
bol as follows.

Definition 1 (preceding symbol)

For an LR(1) item set I, if the kernel item of I
is of form {4 — a - §,a], the symbol a, which is
immediately before the dot, is called the preceding
symbol of I.

For example, the preceding symbol of the item
set I3 in Fig. 4 is nonterminal symbol “A”.

The closure operation which defines how a state
is constructeq can be described as follows.

(i) Suppose that a be the preceding symbol of the
item set I, and the computation of closure(I)
from the given grammar requires that item
< B — 4, b> be added to I.

(ii) Let {ci,i =1,--,L} be the last functions of
a, {dj,j =1, -+, M} the first functions of 7,
{ex, k=1, ---, N} the last functions of v,

Connect(c;,d;) =0, for Vi, j (2)

means that a and v are not connectable, and

Connect(ex,b) =0, forVk (3)
means that 4 and b are not connectable.

(iii) Add the item “< B — -y, b >” to I when
both expressions (2) and (3) are not fulfilled.

In the above algorithm, when a or 8 is a nonter-
minal symbol, it is necessary to compute the con-
nectability dynamically by using first or last func-
tions. For a large scale grammar, there is ajthe

potential for the connectability between two syu-
bols to be recomputed many times during the gen-
eration process of LR items. To avoid this over-
lap computation, the connectability between two
symbols can be computed in advance by extending
the connection matrix from between only terminal
symbols, to between any symbals.

Definition 2 (extended connection matriz)

For a, B € (Vr U Vy), let {a;,i = 1.---.k}
be the last functions of a and {b;,j = 1,---.m}
the first functions of 8. The extended connection
matriz Connect'(a,) between a and 8 is defined
as follows.

Connect'(a, B)
_ { 0, if Connect(a;, bj)=0for Vi, j
=11

otherwise
As an example, the extended connection matrix
constructed from the grammar in Fig. 1 and the
connection matrix in Fig. 2 is shown in Fig. 5.

(4)

RIGHT

ala2blb2clc2 $IABC XY S
al[0 01 0000i01 0010
a2l0 001 000i01 0010
b1{O O 1 001 0i0 1 101 0
Llb2looo1 1 00i01 1000
Efc1/0 000000000000
Flc2/0 0 0 000 1i0 0000 0]
r(alo0o000o00i0o1 0010
Blo oooooo0io 1 1 010
C|00O0O0O0OO0i0O0O0O0O0O
X|o0000000O0i0000O0 10
Y|[0000O0O0O0i000O0OO0
S{00000O00i{0 00000

Figure 5: An extended connection matrix

With the definitions about the extended con-
nection matrix and the preceding symbol, the al-
gorithm for constructing the closure is described
in Fig. 6. Using this algorithm, the generation of
illegal items that violate the connection constraint
can be avoided. As an example, consider the item
sets in Fig. 4,

1. In Iy, since Connect’(al,b2) = 0 and

Connect'(a2, bl) = 0, the following two items

A— al; b2

A — -a2; bl
will not be created according to the procednre
of closure construction. Moreover, since the

function closure(]);
begin
6 := preceding symbol of I ;
repeat
for each item (A — a- BB,a] in I
for each production B — 7 in G
for each terminal b in FIRST(fBa)
if [B — -v,b] is not in I then
if Connect'(6,7] =1
and Connect'[y, bl =1 then
add [B — -, b] to I;
. until no more items can be added to I;
return [
end;

Figure 6: Computation of closure

above two items are not generated, the item
“4 — al-; b2” in I, and the item “A —
a2-; b1” in I, will vanish automatically.

2. In Iy, the preceding symbol of this item set
is “b1”, since Connect'(bl,cl) = 0, the item

C—-l;$

will not be generated, and then the item set
I, that transferred from above item by shift-
ing “c1” will vanish automatically.

In Fig. 4, all items that are not created accord-
ing to our method are marked “+". As a result,
the LR table from the modified item sets is shown
in Fig. 7.

3.3 Conastraint propagation

By using the above closure computation algo-
rithm, the generation of a large number of illegal
items, namely, a large number of illegal actions of
the LR table, has been avoided.

However, some useless actions still exist in the
LR table generated by the above method. Con-
sider the action “re6” with lookahead “b2” in state
2, after it has been carried out, the parser will
transfer to state 3, but in state 3, no action with
the same lookahead “b2” exists. This means no
succeeding action for “re6”. In fact, during the
generation process, the item < B - b2 ; b1 >
in I3 was not constructed since Connect(b2,b1) =
0 (see Fig. 4). For actions like this, since no suc-
ceeding action exists, carrying out these actions
only leads to an error for a GLR parser. On the
other hand, for some actions, there may be no

Action Goto
alla2| bl |b2]clfc2] $ JA|BIC|{X]|Y]S
0|sl]s2 3 4 §
1 s
2
3 s6/12 8
4 s9 10
5 acc
6 r7
7.
8 r3
9 sl2 13
10 rl
11
12 rl0
13 r4

Figure 7: The canonical LR table, incorporating
connection constraints

preceding actions, meaning that these actions will
not be carried out for a GLR parser. In the above
two circumstances, actions that have no succeed-
ing or preceding actions are useless actions for a
GLR parser. To save memory space and improve
the parsing efficiency, we modify the LR table
to delete these useless actions through constraint
propagation, this procedure shown in Fig. 8.

function modify(Table);
begin
repeat
for each action A in Table
if no preceding actions then
delete A
else if no succeeding actions then
delete A
until no more actions can be deleted;
return Table

end;

Figure 8: Procedure of constraint propagation

In the above example, action “re6” (lookahead
“b2”) in state 2 has no succeeding actions. and as
such, it can be deleted according to the procedure
in Fig. 8.

Although we only discussed how to incorporate
the connection constraint into a canonical LR ta-
ble, the proposed method can be applied to both
an SLR and LALR table. In the case of an SLR ta-

—707—

ble, instead of checking the connectability between
the item and its lookahead symbol, we should
check the connectability between the item and its
follow functions.

4 Experiments

A grammar with 1208 rules for a continuous
speech recognition system was used to test the
effects of the proposed method. This grammar
consisted of 1024 terminal symbols. The connec-
tion constraint between the terminal symbols was
represented in a connection matrix.

Table 1 shows the comparisons of the initial LR
table size, where (1) indicates the initial canoni-
cal LR table that did not combine the connection
constraint, (2) indicates the initial canonical LR
table that combined connection constraints with
the method proposed in this paper. For the sake
of comparison, the final LR table processed by
coustraint propagation is listed in (3).

method | state shift | reduce | goto
(1) 10,715 | 20,573 | 633,409 | 421
2) 1,141 | 1,005 | 5,724 | 421
3) 1,139 | 1,005 1,211 | 421

Table 1: Comparisons of the initial LR table size

It is clear that the generation of a large number
of illegal actions was avoided through incorporat-
ing connection constraints into the generation pro-
cess of the LR table. The number of states, shift
actions, and reduce actions of the LR table in (2)
is decreased to 11%, 5%, and 1% of those of the
LR table in (1), and the number of reduce actions
decreased further through constraint propagation.

Since a large number of illegal actions were not
generated with method (2), much less CPU time
was required for generating the LR table com-
pared with method (1). This is helpful when a
grammar is being designed. Here, the grammar is
not yet completely fixed, and after each change of
the grammar, a new LR table must be generated.

5 Conclusion

This paper proposes a method to integrate con-
nection constraints into an LR table. Through
this method, connection constraints are incor-
porated into the generation process of LR item
sets initially, and then all useless actions are
deleted through constraint propagation to reduce

the memory space of the resulting LR table. The
experiments showed that by using the proposed
method, the explosion of the size of the initial LR
table was avoided. The proposed method has heen
applied to the integration of Japanese syntactic
and morphological analyses and the addition of
grammatical constraint into the allophone-based
continuous speech recognition system.

Future works will include incorporating two
or more connection matrices into an LR table.
This is useful in some applications, for example,
in an allophone-based continuous speech recogni-
tion system, in which allophonic connection con-
straints, as well as morphological connection con-
straints should be considered.

References

A.V. Aho, S. Ravi, and J.D. Ullman. 1986. Com-
pilers: Principle, Techniques, and Tools. Addi-
sion Wesley.

K. Kita, T. Kawabata, and H Saito. 1989. H\[\I
continuous speech recognition using predictive
LR parsing. In Proc. ICASSP-89, pages 703-
706. IEEE.

A. Nagai, S. Sagayama, K. Kita, and H. Kikuchi.
1993. Three different LR parsing algorithms for
phoneme-context-dependent hmm based cou-
tinuous speech recognition. IEICE Trans. Inf.
& Syst., E76-D(1):29-37.

H. Tanaka, T. Tokunaga, and M. Aizawa. 1993.
Integration of morphological and syntactic anal-
ysis based on LR parsing algorithm. In Proc.
International Workshop on Parsing Technalo-
gies, pages 101-109, Tilburg.

H. Tanaka, H. Li, and T. Tokunaga. 1994.
Incorporation of phoneme-context-dependence
into LR table through constraints propagation
method. In Proc. RAAAI-94 Workshop on In-
tegration of Natural Language and Speech Pro-
cessing, pages 15-22, Seattle.

M. Tomita. 1986. Efficient Parsing for Natu-
ral Language: A Fast Algorithm for Practical
Systems. Kluwer Academic Publishers, Boston.
MA.

—708—

