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SUMMARY A family of new generalized LR parsing algo-
rithms are proposed which make use of a set of ancestors tables
introduced by Kipps [4]. As Kipps's algorithm does not give us
a method to extract any parsing results, his algorithm is not con-
sidered as a practical parser but as a recognizer. In this paper,
we will propose two methods to extract all parse trees from a set
of ancestors tables in the top vertices of a graph-structured stack.
For an input sentence of length n, while the time complexity of
the Tomita parser can exceed O(n3) for some context-free gram-
mars (CFGs), the time complexity of our parser is O(n3) for any
CFGs, since our algorithm is based on the Kipps's recognizer.
In order to extract a parse tree from a set of ancestors tables,
it takes time in order n2. Some preliminary experimental resuits
are given to show the efficiency of our parsers over Tomita parser.
key words: GLR parsing, Graph structure stack, Kipps methed,
Ancesiors 1able. Complexity

1. Introduction

The LR(k) parser [5] can parse deterministically and
efficiently any input sentences generated by a LR(k)
grammar. LR(k) grammars are a subset of context-free
grammars (CFGs). Tomita extended the LR(k) parser
to handle general CFGs not limited to the Chomsky
normal form[12]. The extended algorithm is called the
Tomita parser, and is known as one of the most efficient
generalized LR (GLR) parsers. Empirically. Tomita’s
algorithm is faster than Earley's algorithm [2], but there
are some CFGs [3] for which the time complexity of
Tomita’s algorithm is worse than that of Earley's and
for general CFGs. the parsing time crosses over O(n?)
for the input sentence of length n [4]. This is because
using Tomita’s data structure, the graph-structured stack
(GSS). during the reduce actions of the LR table, in
order to retrieve a set of ancestors vertices, duplicated
traversal of the same edges and the access of the same
ancestors occur many times.

To avoid the above problem, Kipps introduced a
data structure called an ancestors table in which the an-
cestor vertices are stored [4]. Using only the ancestors
tables in the rop vertices (leaves) of GSS, Kipps algo-
rithm can generate a set of ancestors vertices in constant
time without traversing any edge in the GSS, and thus
can avoid duplicated traversals of the same edge and
the duplicated access of the same ancestors. As a re-
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sult, Kipps algorithm can give O(n3) time complexity
for any CFGs.

However, as Kipps's algorithm does not give us a
way to extract any parse results, it is not considered as
a practical parser [7] but as a recognizer. In this pa-
per, we propose a family of GLR parsing algorithms
(Drit parser and AGLR parser) which can get all parse
trees from ancestors table without traversing any edge
in GSS. and whose time complexity gives the same n?
order as that of Kipps algorithm. In order to extract
a parse tree from partially parsed informations (a set
of drits in case of Drit parser; a set of ancestors tables
in case of AGLR), which has been stored during shift
and reduce actions, it takes O(n?) time. For the family
of GLR parsing algorithms, when the result of parsing
is highly ambiguous, the experiments confirm the pos-
sibility of tremendous speed up in the parsing time.

Following Kipps [4]. we briefly explain Kipps rec-
ognizer in Sect. 2. Section 3 explains the family of new
GLR parsing algorithms. Section 4 gives an experimen-
tal evaluation of the family of GLR parsing algorithms
showing evidence that our GLR parser is efficient than
Tomita parser. In Sect. 5, we give the tree generation al-
gorithm for AGLR parser, and we conclude with Sect. 6.

2. An Overview of Kipps Recognition Algorithm

Figure 1 shows a schematic example of a GSS. Here
v; represents a vertex (the vertex v, is the root of GSS
and v, is a leaf or top vertex) and w; represents #th
input word. The leaves of a GSS grows in stages. At
each stage U; the #th word w; of the input sentence is
processed with the help of the next look-ahead word
w;41. The vertex vy in stage Ug covers wg and ws ws,
vy in stage Us covers wyws. In the same way, v, in stage
Uy covers wy and wswy.

In Tomita's algorithm®, the same ancestors and/or
the same edges might be accessed many times. For ex-
ample, in the GSS shown in Fig. 1, in order to retrieve
an ancestor vertex, say vgq, at a distance 2 from the top-
of-stack v4. we have to traverse two paths from v, to
vg, namely vg—vs—vg and vy—v.~vg, resulting in access-
ing the same one ancestor v4 two times. In general. the
ancestors at a distance of ¢ from a leaf in the stage U;
will be obtained by traversing every edge from the leaf

"We assume the familiarity of Tomita parser.
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to them. As the number of parents of each vertex is in
the order of 7, the number of paths between the leaf and
the ancestors at a distance of ¢ becomes at most i%. In
general, i?, where p is the number of nonterminal and
preterminal symbols in the right hand side (rhs) of the
longest production.

Due to the time consumed in retrieving the ances-
tor vertices, the recognition time of Tomita’s algorithm
becomes O(nl*?) for general CFGs, and thus for Chom-
sky normal form, the recognition time of Tomita’s algo-
rithm becomes O(n?). If the access to the same ancestors
and/or same edges more than once is avoided, the time
to retrieve the ancestors can be reduced. For this pur-
pose, Kipps changed the data structure of the vertex to
< 1,8, A > (see Fig.1). Here ¢ represents the stage num-
ber, s the state and A is the ancestors table which con-
sists of a set of tuples such that {< k, Ly > |k =1,2,--,
p} where Ly is a set of ancestors at a distance of k from
the vertex < i,s, A >. The ancestors table is formed by
at most p tuples and the number of ancestors in Ly is in
O(i). Figure 1 shows the contents of each vertex along
with the contents of ancestors table, here p = 3.

When a new leaf is created during shift and reduce
actions, each ancestors table can be formed in a con-
structive way by using the ancestors tables formed in
the past. Concretely. on using the ancestors table A’ of
the parent vertex of a leaf, the tuple < k, L} > in A’
can be used to form the tuple < k + 1, Lg4; > of the
ancestors table A of the leaf. The time taken to fill all
the ancestors tables in stage U; is in O(i2). Once an
entry in an ancestors table is filled, the time to retrieve
that entry is constant thereafter. In other words, only
looking for an entry < q, Ly > in the ancestors table of
a leaf, it is possible to get a set of ancestors (=Lg) at
a distance q from the leaf. From the above arguments,
it is clear that the time complexity of Kipps recognizer
will become O(n?) (i.e, 37, i2). The algorithm to fill
an ancestors table can be found in Ref. [4].

3. A Family of Generalized LR Parsing Algorithms
using Ancestors Table

At first, we will introduce the Drit parser and then a

. and reduce actions.

An example of GSS showing ancestors table.

slightly different parser, called the Ancestors table based
GLR (AGLR) parser. The most important feature of
the Drit and AGLR parsers is that the partial parse re-
sults can be obtained from ancestors tables in the GSS’s
top vertices alone. Thus during reduce actions, as with
the Kipps algorithm, the traversal of edges in GSS is
completely avoided. Due to this feature, the time com-
plexity for parsing is limit to O(n®) for any CFG.
3.1 Drit Parser
From the ancestors table in the leaves alone, it is pos-
sible to create dot reverse items (drits) [9] during shift
Drits are dual to Earley’s items
created in the Earley parser [2]. By modifying Kipps
recognizer, we propose a parser called a Drit parser.

In adrit [A — «-f8,7] in R;, j represents the stage
number just after § and 7 represents the stage number
of the position where the dot appears (in this case the
stage number just before 3). Thus 3 represents the por-
tion of the input sentence from w;y; to w; which has
been processed. In case of Earley’s items, a is the por-
tion processed. The drit [A — -y, 7] in the drit set R;
represents the part of the input sentence from w;4, to
w; which is analyzed as « and then recognized as A.

Some readers may wonder why we create drits in-
stead of Earley’s items. Clearly, it is not possible to cre-
ate Earley’s items directly with these parsing algorithms
which do rightmost derivations. Earley’s data structure
were based on particular parsing style, so we have to
make suitable modifications. For clarity, we will give
an example of creating drits using the ancestors table of
vg (refer Figs. | and 2). Through the example we show
that the process is not guaranteed to create necessary
and sufficient Earley’s items.

Suppose the reduce action X — Y Z is applied to
the top-of-stack (leaf) vy, namely <6,56,Ag>,

where Ag = {<I, {ve,vy}>. <2, {veva}> <3,
{va.vs}>}, and
Vi = <5s85Af>, v, = <4s4Ae>, vqg =

<3,53,Ad>, v. = <2,52,Ac>, - .
From the ancestors table Ag in v, alone, we know
the following facts (refer Fig.2).
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Fig. 2  Input sentence covered by grammar rule X — Y Z for
vg in Fig. 1.

(1) Vertex v4 corresponds to Z which covers wsws
and we, since the vertices at a distance 1 from v, are v,
and vy whose stage numbers are 4 and 5 respectively.

(2) As the vertices at a distance of 2 from v, are
vq and ve, Y Z covers wawswg and wawqwswg respec-
tively, since the stage numbers of v4 and v, are 3 and 2
respectively.

In case of creating Earley’s items we have to know
the exact portion of the input sentence covered by Y, but
from the ancestors table Ag alone, (1) and (2) suggest
that we are unable to know it. Using Drit parser’s data
structures, to get exact portion of the input sentence
covered by Y, we have to traverse through the GSS, but
we do not want to do so, because it leads to the same
inefficiency problem as Tomita’s algorithm. This is the
reason why, from Ag alone, the creation of necessary
and sufficient Earley’s items is not guaranteed.

In contrast, we can create the following drits using
Ag alone, because in drits it is not necessary to know
the exact portion of the input sentence covered by Y.
Drits from (1):
Rs3[X =Y. Z8]
Drits from (2):
Rz3[X—=-YZ 6], Re3[X—-YZ6]

The reason why we can create necessary and suffi-
cient drits is that GLR parsing is based on right-most
derivations which drits reflects. Another bonus in using
drits is the localization of duplication checks for newly
created drits. The stage number inside the drits will
remain the same throughout the processing of a stage.
This enables us to limit the scope of duplication check
of drits to within that stage.

Now we will give an algorithm for creating drits
during the reduce action. Let us consider the produc-
tion rule used during the reduce action in stage U; as

Dy = Co1 Gpz -+ Cpg—k Gpg—k1 -+ Cg

In this case, we can create drits from the algorithm

R,23[X =Y Z6)
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given below.
for k from qto I
for Vj’'st.<j' s', 4’ > € ANCESTORS(v, k)

let Rjr c= Rj' U {[ Dp — Cpl Cp2 ......

Cra—k * Cog—k+1 -+ Gpq. 1}

This algorithm of creating drits should be added at the
beginning of the reduce procedure given by Kipps in
Ref. [4].

Let us consider the case where the parser is going to
enter the stage U, from the stage U; by shifting a look-
ahead word w;4+,. If we assume C be the preterminal
of the word w;4, then during the shift action a drit [C
— - wj41, ¢ + 1] is created in R;.

R; := RyU {[C - Wig, T+ 1]}

The reason for including the newly created drit in
the set R; is that, at the time just before shifting word
w;41, the active leaves have the stage number i. After
shifting the word w;4, for all the leaves, the top stage
number will be incremented by one and when no actions
remain in the stage U;, the processing will enter the
new stage U;4;. This step of creating drits during shift
action should be added at the beginning of the shift
procedure given by Kipps in Ref. [4].

Let us consider the computational complexity of a
Drit parser. As the drit parser is based on Kipps rec-
ognizer, and as the creation of drits does not affect the
filling of ancestors table, the time consumed in filling
up ancestors table will remain as the same as mentioned
in Sect.2. That is, in stage 1, it takes O(i2) time. Then
in Drit parser, the factor which is to be worried is the
time consumed in creating drits.

According to Lemma 1 in Sect. 3.1.2, the number
of drits created in a stage U; is in O(|G|i). The time to
create the drits in this stage will also become O(|G|7).
Thus creation of drits will consume O(|G|n?) time for
a sentence of length n. This shows that creation of drits
does not affect the order of parsing time complexity. In
this way, drit parser can parse a sentence of length n in
O(n?) time.

To find the space complexity of Drit parser, we
have to consider the memory space consumed by GSS
and the total number of drits created. It is obvious that
the space consumed by GSS is in O(n?). From Lemma
1, we know that the total number of drits created in a
stage U; is in O(JG}i). For an input of length n, this
becomes O(|G|n?). Thus the space used by GSS in the
Drit parser is O(n?) and, including the space consumed
by total number of drits, becomes O(|G|n?).

In summary, the drit parser creates a set of drits
using only the ancestors table of each leaf during the
shift and reduce actions. By considering the duality of
a drit and an Earley’s item, from a set of drits we can
generate all the possible parse trees using an algorithm
similar to that of Earley’s tree generation algorithm,
which consumes O(n?) time to generate a parse tree [1].
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3.1.1 An Example of Drit Parsing

In this section we give an example of the Drit parser
using the grammar and the LR table in Figs.3 and 4
[12]. The input sentence used is “I saw a man with a
telescope”. In this example we give only necessary steps
and skip the rest, and note that the ancestors table has
two entries because, in Fig.3 p = 2.

At the beginning, the GSS has only one vertex la-
beled v, in the stage Ug as shown in Fig. 5(a). By look-
ing at the action table, the next action “shift 4 [sh, 4]"
is determined from the LR table given in Fig.4, and a
drit corresponding to the shift action is created.

On shifting the word “I”, the parser enters into the
stage U; and pushes a vertex v, with stage number 1,
the state 4 and an ancestors table Ab. From the state
4 of v, and the preterminal v of ‘saw’, the next action
“reduce 3 [re, 3]” is determined. Before reducing, drits
corresponding to the reduce actions are created from the
ancestors table Ab of the top vertex v,. This is shown
in Fig. 5(b).

The action[re, 3] is performed using the rule num-
ber 3, NP — n, whose rhs has only one symbol and so,
the ancestors table Ab is looked for the parent vertex
at distance | to get vo. Thus during the reduce action
traverse through GSS is avoided. The parser looks for
the Goto part of the LR table and a new vertex labeled
v with state 2 is pushed into the stage U, of GSS. For
the top vertex v,, “shift 7" has been determined as the
next action. This is shown in Fig. 5(c).

Continuing in this fashion, after some 3 steps. the
GSS becomes as shown in Fig. 5(d).

At this point, a conflict with “reduce 7" and *'shift

(1) S — NP,VP
(2) S —- S,PP
(3) NP —

(4) NP — detn
(5 NP — NP/PP
(6) PP — pNP
() VP = v,NNP

Fig. 3 An English grammar.

State Action field Goto field

det n v P §$ [NP[PP[ VP

0 sh3 | sh4 2 1

1 shé ace 5

2 sh?7 shé 9 8

3 sh10

4 red red red

5 re2 re2

6 sh3 | sh4 11

7 8sh3 | sh4 12

8 rel rel

9 re$ re5 re§

10 red red red

11 re6 | re6/sh6 | re6 9

12 re7/sh6 | 1e? 9
Fig. 4 LR table of the grammar in Fig. 3.

6" occurs and both should be executed. After executing
“reduce 77, the new vertex v, is created and the GSS is
as shown below. The top vertex v, is still active since
the action “shift 6™ is not yet executed. Thus at this
point, we have two active vertices v, and v, as shown
in Fig. 5(e).

The top vertex after executing “reduce 1” will also
have a “shift 6" action. Now each of the top vertices
have a “shift 6” action with the same preterminal ‘p’
of the word “in”. So, a merged vertex v; with state
6 is pushed into the GSS, where the first entry of the

Next Word : | (n) g:g?ee number
U0 +—Stage where 1_ §— Ancestors table
@ {sh 4] Va=<0,0 Aa>

| Aa =< >}

Unique Pointer
Create[n--> .1,1] in Ro

Dot reverse item ___f
(a)

Next Word : saw (v)
Uo U1

{3 Where Vo=<1,4,Ab>
Ab = (< 1, {Va] >}
Create (NP -->.n, 1] in R

(b)

Next Word : saw (v)

Uo Ut Where Vo=<1,2 Ac>
[sh7) Ac={< 1, {Va}>}

[v -->.8aw,2) in Ry

()

Next Word : with (p)
Uo (V)

U1 Uz Usg
O—O—O—®@%%
Where

[VP-> v.NP, 4]inRe

Vg =<4,12, Ag>
Ag={<1,(vd]>,  (VP->.v NP, 4]inR;

<2, {Vc} >}
(d)
Next Word : with (p)
Uo 5} Uz U3 ug
(Va) () (%) (Vo)tsh 6]
Where (W) rre 1]

Vh=<4,8,
he<4 B AN> o LNP.VP.4]in R

Ah={<1, {Vc} 5,
<2,{Va}>} [(S.>.NPVP,4]in Ro
()
Next Word : a (det)
Uo Ut U2 U3 U4 Us

Vj =<5,6,Aj>
Aj ={< 1, {Vg, Vi} >,
<2, (Va, vd} 5}

[det -->.a,6]in Rs

H

Fig. 5 (a)~(f) A sample trace of the Drit parser.
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ancestors table Aj of v; will have two parents (v, and
vi, where v; = <4,1 Ai> and Ai={<1,{v,}>}) and, the
second entry at a distance 2 is formed by merging the
first entry of the ancestors table Ag and Ai as shown in
Fig. 5(f).

The rest of the parsing continues in the same fash-
ion. During an “error” process, the corresponding
branch of GSS will be terminated as an error and during
an “accept” process it will be terminated by accepting
the sentence.

3.1.2 A Theoretical Result of the Drit Parser

Lemma 1: The number of drits in a drit set is in
O(|Gl3) in stage U;.

Proof: Using a grammar G, during the reduce action,
the number of drits created will be equivalent to |G|,
where |G| is the total number of terminal and pretermi-
nal symbols in the rhs of all the rules in G. That is, |G|
is computed as: |G| = Y, 4_,,ep |@|. where [a] is the
length of a and P is the set of production in G.

In stage U;, the reduce action will be called for at
most 7 times. This is due to the condition on recursive
calls, that the reduce action will be called no more than
once for each parent of a vertex in U;, where the number
of parents is proportional to 2. Hence the number of
drits created in stage U; will become |G| * 7.

Since there are a bounded number of vertices (say c)
in a stage, the above reduce action will occur a bounded
number of times in a stage. Thus the number of drits
created will become |G| * i* ¢ = O(|Gl). o

3.2 AGLR Parser

In this section we will consider another GLR parser
called the Ancestors table based GLR (AGLR) parser.
We give a naive version of AGLR parser in the follow-
ing.

The Drit parser creates a set of drits during shift
and reduce actions. Since a set of drits can be created
from an ancestors table, during reduce and shift actions
we can simply store the ancestors table of the leaf vertex
along with the rule used in the reduce action. And we
add to each vertices, a link to their parent, and then
store the vertices in a two dimensional array called a
vertex table [14].

In AGLR, when a new vertex v is first formed, the
ancestors table of v will record its own history at 0-th
distance, as <0, {v}>. The reason for adding its own
history is to know the rightmost position of the rule
applied in the reduce action, which can be used during
tree generation process.

In case of Fig.1, for example, the ancestors table
of the leaf vertex vy, <6, s6, Ag> is modified as shown
below.

Ag = {<0, {vg}>, <l, {ve, vs}>,

<2, {ve, va}>, <3, {...}>}
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If the reduce action on the leaf v, specifies X — Y
Z, then the above ancestors table will be stored along
with the rule used by reduce actions on the leaf.

[{X = Y Z}. {<0. {vg}>. <1, {ve, vf}>}]

We call this information an ancestor item. In gen-
eral we represent an ancestor item as [{X — 8}, A].
In the ancestor item we store the rule used for the re-
duce action and the ancestors vertices along with their
respective distances. In the above ancestor item v, is
in stage 6 and, since the parent of v, and vy are in the
stage 2 and 3 respectively, it accomplishes X from 2 to
6 and from 3 to 6. This information is stored in an
ancestor item table. For further detail refer [14].

The vertices in the ancestor item points to the vertex
table. For each vertex v, the vertex table will enter <(v,
i), PL>. Here 7 is the stage number in which v appear,
PL (a set of parent link) is represented as {(Pv, j)}
which means that Pv is the parent of v in stage j. In
case of Fig. |, the vertex table becomes:

[ <(Va, 00.{0}>, <o, DA(Va, 0)}>, <(Ve, 2).{(Va.
0)}>, <(vd, 3).{(vs, N}>. <(Ve, ){(ve, 2), (v4, 3)}>,
<(vyg, 5).{(va, 3)}>, <(vq. 6).{(Ve. 4). (v§. 5)}> ]
Using the informations in the above ancestor item and
the vertex table, we know the following.

(1) <0, {vg}> in the ancestor item and < (v, 6), {(v.,
4). (v4, 5)}> in the vertex table indicates that, a
sequence of words wswe (the stage number between
4 of v, and 6 of v;) and a word we (the stage
number between 5 of vy and 6 of vy) are covered
by Z (refer Fig.6(1)).

(2) <1, {Vve, v}> in the ancestor item and < (v, 4),
{(ve, 2), (va, 3)}>, < (v4, 5), {(v4, 3)}> in the
vertex table indicates that, waw, (the stage number
between 2 of v, and 4 of v.), the word wy (the
stage number between 3 of v4 and 4 of v.), and
wyws (the stage number between 3 of v4 and 5 of
vy) are covered by Y (refer Fig.6(2)).

(3) From (1) and (2) : waws&wsws, wikwsws and
wyws&wg are covered by Y Z and thus X (refer
Fig.6(3)).

Note! that, (2) in the above instance, teaches just
the portions covered by Y.

The time taken to fill an ancestors table is O(3) in
stage U;. Since an ancestors table is filled after every
reduce and shift action, it takes O(i?) time in stage Uj.
For a sentence of length n, the time complexity to fill
the ancestors table becomes O(n?), which is the same as
Kipps and Drit parsers.

With an efficient representation for the vertices us-
ing the vertex table, the GSS space complexity of AGLR

tCareful reader will find out that it is possible to extract
a set of Earley’s items as well as drits from the modified
ancestors table in the top vertex. However it is not necessary
to do so because, it is enough to store the ancestors table of
the top vertex as it is in order to generate any parse tree.
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Fig. 6 (1) Input covered by Z in X — Y Z. (2) Input covered
by Y in X — Y Z. (3) Input covered by X — Y Z.

is restricted to O(n?). The array representation of the
vertex table enable us to access any vertex in O(1) time.
The ancestors table will have only the vertex pointers.
Thus the space consumed by the ancestors table becomes
O(4) in a stage U;. Since there will be only O(n) ver-
tices in the GSS, the space consumed by the vertex table
becomes O(n?). Eventually, the total space consumed
by vertex table along with the ancestors table becomes
O(n?). The introduction of vertex table will not affect
the time complexity and the tree generation process, the
details of which is given in[14].

However, the ancestor items stored will consume
O(n?) space. In this way, both the parsing time and the
space complexity of AGLR becomes O(n?).

4. Experimental Results
4.1 The Environment

In this section, we will examine the Drit and AGLR
parsers and compare them with Tomita parser. In
P.Shann [8], experimental comparisons with Chart
parser and the Tomita parser has been shown that
the Tomita parser performs faster than Chart parser.
Through experiments we will show that our parsers are
faster than the Tomita parser, also satisfying our theo-
retical expectations.

We used the same grammars and sentence sets ap-
peared in Ref. [12]. In this paper we will consider
one such grammar which is frequently used in natu-
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ral language processing. This grammar, say grammar
G (which is same as grammar-IV in Ref. [12]), consists
of 394 grammar rules. This grammar was originally
written by Takakura [10]. The inputs to this grammar
are:

1. Normal sentences used in text books (call sentence
set ). A sample sentence is shown below. The com-
plete sentence set I will be found in Ref. [12].

In looking at language as a cognitive process, we
deal with issues that have been the focus of linguis-
tic study for many years, and this book includes
insights gained from these studies.

2. PP attachment sentences (call sentence set II),
which has a pattern

n v det n (p det n)™, m > 0.

The experiments were done on Sony News work
station (20 MIPS) using C programming language for
implementing Tomita, Drit and AGLR parsers.

4.2 The Evaluation

The results of parsing sentence set I using grammar G
is shown in Figs. 7(2) and 7(b) and that of sentence set
IT is shown in Figs.8(a) and 8(b). Figures 7(a) and
8(a) indicates the ratio of Tomita/Drit parsing against

‘length of sentences in sentence set I and sentence set

IT respectively. These graphs shows that Drit parser is
considerably faster than Tomita parser.

The Figs.7(b) and 8(b) indicates the ratio of
Tomita/AGLR parsing against length of sentences in
sentence set I and sentence set II respectively. These
graphs also shows that AGLR parser is faster than
Tomita parser in most of the cases.

Careful examination of grammar G reveals that it
contains more rules in Chomsky normal form. The av-
erage length of rhs of the rules used in this grammar is
275, (i.e, p = 2.75). Since Tomita parser’s time com-
plexity depends on the value of p, using this grammar,
the practical performance of AGLR and Drit parsers
are better than Tomita parser. If we use grammars in
Chomsky normal form (for which p = 2), both Drit
and AGLR parser will give the same performance with
Tomita parser.

Next in Figs.9(a) and 9(b), we will give the com-
parison of memory space used by the Tomita and Drit
parsers. The memory space is used mainly by GSS,
packed forest (in case of Tomita), and ancestors table,
drits (in case of Drit parser). Note that in Drit parser,
we use the ancestors table and store the drits as men-
tioned in Sect.3.1. This is the reason why Drit parser
consumes less space compared with Tomita parser, even
after using the ancestors table. The other details of the
practical evaluation can be found in Refs. [11] and [6].
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5. Generating a Tree from a Set of Ancestors Table

For the drits created in Drit parser, the tree generation
algorithm of Earley as given in Ref. [1] can be modified
to generate all the parse trees. Here we will give the al-
gorithm for constructing a parse tree using the ancestor
items and the vertex table. The algorithm for AGLR
produces a left parse. The following algorithm con-
structs a parse tree from a set of ancestor items stored
in the ancestor item table (AIT) which is obtained dur-
ing the parsing process. In an ancestor item [{X — g},
A}, A represents a set of ancestors in the form < Dy, Eq
><DyLE; >, <Dm Em >, -+, <Dy, E, >, where
Dg, Dy, -+ D, represents distances and Eg, E;, - E,
represents ancestors at corresponding distances. p is the
length of the longest production. In the algorithm the
vertex table is represented by VT.
ALGORITHM :

Construction of a left parse from a unique set of
ancestor items in AIT.
Input : A CFG, G = (N,T, P, S), an input sentence w
= w) wy ... w, € T", a set of ancestors item, VT, and
AlIT.
Output : A left parse for w, or a “error” message.
Method : If (0. n. Ai) € AIT (s.t. Ai = [{S — a},
At]) then w is not in L(G), so emit “error” and halt.
Otherwise execute the routine O([0, n,{S — a}, At)),
the routine O is defined as follows.

Routine O([4,j.{A — B}, At]):
n Ifﬁ = X1 X2 - Xm-1 Xpms
setk=11l=m-l,r =1i.
(2) (a) If X, € T, add 1 to k and r, subtract | from [.
(b) If Xx € N then for < D, E; >€ At, and
for v, € E,, find <(Vn,q), PL> € VT
s.t. (Pvp, r) € PL
(where Pvy, is the parent of vy) then,
find an ancestor item (r, q.{X; — 7}, At') €
AIT.
Then execute O([r, q.{Xx — ~7}. AU']).
Add 1 to k, subtract | from I, set 7 = q.
(3) Repeat step (2) until &k = m+1. Halt.
Note that in an ancestors table, at each distance
Dy, Dy, - -+, D, there may be more than one ancestor.
If we want to generate a particular tree, in the worst
case, all the possibilities will be considered one by one
in step 2(b) to determine a correct path.

6. Conclusion

For certain CFGs it was found that the time complex-
ity of Tomita’s GLR parser is more than that of Ear-
ley’s parser [3].[4].[12].[13]. Kipps gave a recognizer
in which he made small modifications to Tomita’s algo-
rithm. The time complexity of the modified recognizer
is the same as that of Earley's O(n3) for any CFG [4].
However, Kipps algorithm only recognizes the input
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Table 1 Complexity table.
Complexity Factors | Tomita | Kipps | Drit | AGLR
Parsing Time nlte nd n3 nd
GSS space n? n? n? n?
Tree Extraction n - n? n?

sentence as grammatically acceptable or not and it does
not produce any parsing results such as partial parse
trees or items. For this reason, Kipps algorithm can
not be taken as a practical parser.

In this paper, using ancestors table introduced by
Kipps, we proposed a family of parsing algorithms, Drit
and AGLR. Using their ancestors tables we show a
method to extract parse trees. Experiments supported
theoretical results showing that these algorithms per-
form faster than Tomita's algorithm. Since they are
based on Kipps algorithm, their parsing time complex-
ity is in O(n3). Our theoretical results on complexity
are summarized in Table 1.
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