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This paper shows the empirical results of our probabilistic GLR parser based on
a new probabilistic GLR language model (PGLR) against existing models based
on the same GLR parsing framework, namely the model proposed by Briscoe and
Carroll (B&C), and two-level PCFG or pseudo context-sensitive grammar (PCSG)
which is claimed to be a context-sensitive version of PCFG. We evaluate each model
in character-based parsing (morphological and syntactic analysis) tasks, in which
we have to consider the word segmentation and multiple part-of-speech problems.
Parsing a sentence from the morphological level makes the task much more complex
because of the increase of parse ambiguity stemming from word segmentation ambi-
guities and multiple corresponding sequences of parts-of-speech. As a result of the
well-founded probabilistic nature of PGLR, the model accurately incorporates prob-
abilities for word prediction, by way of encoding pre-terminal n-gram constraints into
LR parsing tables. The PGLR model empirically outperforms the other two models
in all measures, on experimentation with the ATR Japanese corpus. To examine
the appropriateness of PGLR using an LALR table, we test the PGLR model using
both an LALR and CLR table. The results show that parsing with the PGLR model
using LALR table returns the best performance in parse accuracy, parsing time and
memory space consumption.
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1 Introduction

The probabilistic GLR language model (PGLR) (Inui, Sornlertlamvanich, Tanaka, and
Tokunaga 1997) has previously been proven to be better than existing models, in particular
the model proposed by Briscoe and Carroll (Briscoe and Carroll 1993) and the baseline mod-
el using a probabilistic context-free grammar (PCFQG), in parsing strings of parts-of-speech
(non-word-based parsing) (Sornlertlamvanich, Inui, Shirai, Tanaka, Tokunaga, and Takezawa
1997). Parsing a sentence from the morphological level makes the task much more complex
because of the increase of parse ambiguity stemming from word segmentation ambiguities and

multiple corresponding sequences of parts-of-speech. In this paper, we empirically evaluate
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the preciseness of a probabilistic model for PGLR against that for Briscoe and Carroll’s model
(B&C), which is based on the same GLR parsing framework. We also examine the benefit-
s of context-sensitivity in GLR parsing, of the PGLR model against the “two-level PCFG”
model (Chitrao and Grishman 1990) or “pseudo context-sensitive grammar” model (PCSG)—
recently presented in (Charniak and Carroll 1994)—which has been shown to capture greater
context-sensitivity than the original PCFG model, by empirical results and qualitative anal-
ysis.

Like the B&C model, PGLR inherits the benefits of context-sensitivity in generalized LR
parsing (GLR). Its LR parsing table (“LR table” for short) is generated from a context-free
grammar (CFG) by decomposing a parse into a sequence of actions. Every action in the LR
table is determined by the pairing of a state and input symbol, so that it is valid to regard
the state/input symbol pair as the context for determining an action. As a result, PGLR
inherently captures two levels of context, i.e. global context over structures from the source
CFG, and local n-gram context from adjoining pre-terminal constraints. Inui et al. (Inui et al.
1997) showed that B&C has some defects in distributing parse probabilities over the actions of
an LR table. One is that, in B&C, no distinction is made between actions when normalizing
action probabilities over the states in an LR table, while PGLR distinguishes the action prob-
ability normalization of states reached immediately after applying a shift action, from states
reached immediately after applying a reduce action. B&C repeatedly counts the next input
symbol when computing the probabilities (though the next input symbol is deterministic),
if parsing is at the state reached immediately after applying a reduce action. Redundantly
including the probabilities of the preceding input symbols in this case significantly distorts
the overall parse probabilities. Moreover, subdividing reduce action probabilities according to
the states reached after applying reduce actions is also redundant because resultant stack-top
states after popping for reduce actions are always deterministic. B&C thus estimates parse
probabilities lower than they should be.

Sornlertlamvanich et al. (Sornlertlamvanich et al. 1997) demonstrated the superior per-
formance of PGLR over B&C and PCFG in a syntactic analysis task involving a determined
sequence of parts-of-speech as input—non-word-based parsing. Most syntactic parsing model
evaluation takes a string of parts-of-speech as input and leaves the problems of word seg-
mentation and part-of-speech determination to other morphological analysis modules, such
as part-of-speech taggers. Since GLR parsing has the ability to integrate morphological and
syntactic analysis (Tanaka, Tokunaga, and Izawa 1996), we can easily realize PGLR pars-

ing for morphosyntactic analysis, by adding lexical probabilities. To prove that local n-gram
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constraints in PGLR are effective in morphological parsing, we conducted a character-based
experiment on the ATR Japanese corpus, and compared the resulting performance with the
existing B&C model and two-level PCFG, an extension of PCFG which is claimed to yield
a significant performance advantage over the original PCFG framework. Since no spaces are
placed between words in Japanese sentences, the models can in this way be evaluated in terms
of both morphological and syntactic analysis.

Parsing highly ambiguous sentences or long sentences can cause extended parse time and
exhaustive use of computing resources. We propose a new technique for pruning parses that
have a lower probability than parses within a predetermined beam width, called the node-
driven parse pruning algorithm. Unlike the method proposed by Carroll and Briscoe (Carroll
and Briscoe 1992), which has to parse a sentence completely before extracting n-best parses,
our technique allows pruning the less probable parses at any stage of parsing. By using our
parse pruning technique, the parser needs to extend only the probable parses within a beam
width, resulting in reduction of both parsing time and memory space.

Section 2 briefly reviews the various probabilistic models, namely B&C, two-level PCFG
and PGLR, which are evaluated through character-based parsing on the ATR Japanese corpus.
Section 3 shows the results of experiments carried out on the three models and the baseline
model of PCFG. We discuss the empirical results and give case analyses in Section 4. Sec-
tion 5 shows the relative results for LALR and CLR table-based PGLR and their parameter
trainability.

2 Probabilistic Models

In this section, we briefly describe the existing probabilistic models, namely B&C and two-
level PCFG, which are to be evaluated against the PGLR model. B&C is a high-performance
probabilistic model proposed for the GLR parsing framework, as presented in (Briscoe and
Carroll 1993). Two-level PCFG is an extended PCFG model for yielding greater context-
sensitivity than the original paradigm. It was recently explored more thoroughly by Charniak
and Carroll (Charniak and Carroll 1994), using the terminology “pseudo context-sensitive
grammar” (PCSG), showing the improvement in per-word cross-entropy over the original
PCFG model. Our motivation in selecting B&C and two-level PCFG for the comparative
evaluation of PGLR is to examine the effectiveness of LR table context-sensitivity (global
context over CFG-derived structures and local n-gram context from adjoining pre-terminal
constraints), and the appropriateness of PGLR for GLR parsing.

In character-based parsing, given a string of characters C' = ¢,...,¢, as an input, the
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joint probability of a parse tree (T') and word sequence (W) is:
)

prwic) = L (T)'P<WIID{05P(C|W,T) "
x P(T)-P(W|T) @

The term P(C|W,T) becomes one when word sequence W is determined, and P(C) is a con-
stant scaling factor, independent of T and W, which is not worthy of consideration in ranking
parse trees and word sequences.

Probabilistic models allow us to estimate parse tree probabilities (P(T")). For the lexical
probability P(W|T'), in our evaluation, we naively assume that word w; in word sequence
W =wy,...,w, depends only on its part-of-speech (I;). Therefore,

P(W|T) ~ [] P(wills) (3)

i=1

The estimation of lexical probability is applied identically in all models.

2.1 Briscoe and Carroll’s Model (B&C)

Briscoe and Carroll (Briscoe and Carroll 1993) introduced probability to the GLR parsing
algorithm in the light of the fact that LR tables do provide appropriate contextual information
for solving the context-sensitivity problems observable in real world NL applications. They
pointed out that an LR parse state encodes information about the left and right context of
the parse. This results in distinguishability of context for an identical rule reapplied in dif-
ferent ways across different derivations. Briscoe and Carroll’s method allows us to associate
probabilities with an LR table directly, rather than simply with the rules of the grammar.

They consider the LR table as a nondeterministic finite-state automaton. Each row of the
LR table corresponds to the possible transitions out of the state represented by that row, and

each transition is associated with a particular lookahead item?!

and a parsing action. Nonde-
terminism arises when more than one action is possible given a particular input symbol. The
following is a review of B&C in terms of our formalization.

Briscoe and Carroll regard a parse derivation as a sequence of state transitions (T):-

l1,a1 l2,az ln—1,8n-1

ln,an
S = §1 = ... =  Sp_1 = Sp (4)

where a; is an action, [/; is an input symbol and s; is the state at time ;. The probability of

1 The term “lookahead”, originally used in (Aho, Sethi, and Ullman 1986), refers to the extra information that
is incorporated into a state by redefining items to include a terminal symbol as a second component. An LR
item of a grammar G is a production of G with a dot at some position of the right side. In this case, however,
Briscoe and Carroll refer to lookahead as an “input symbol”.
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the parse derivation T is estimated by equation (5):-

P(T)

X

n

HP(liaa'iasi|Si—1)

iil

= HP(li;ai|5i71)'P(3i|5i71>li>ai) (5)
i=1

Based on B&C, the following is a summary of the scheme for deriving the action probabil-
ities (p(a)) from the count of state transitions resulting from parsing a training set.

(1) The probability of an action given an input symbol is conditioned by the state it

originated from. The probabilities assigned to each action at a given state must sum

to one. Therefore,

Z Z pla) =1 (for Vs € S) (6)
l€La(s) a€Act(s,l)
where La(s) is the set of input symbols at state s, Act(s,) is the set of actions given
a pair of state s and input symbol [, and S is the set of all states of the LR table.
This means that the actions in the LR table are normalized within each state.
(2) In the case of a shift action (As), P(si|si—1,1,a;) in equation (5) is equal to one

because shift conflict never occurs in an LR table. Therefore,
p(ai) = P(ll, ai|si_1) (fOI“ a; € As) (7)

(3) In the case of a reduce action (A,), the probability is subdivided according to the
state reached after applying the reduce action. The reason for this is that Briscoe
and Carroll associate probabilities with transitions in the automaton rather than
with actions in the action part of the LR table. In this case P(s;|si—1,[;,a;) in

equation (5) is not one. Therefore,

pla;) = P(l;, ailsi—1) - P(si|si—1,1;, a;)
(for a; € A,) (8)

B&C employs the geometric mean of the probabilities of the actions (p(a;)) for state tran-
sitions across the whole parse derivation as the probability of a parse derivation, to avoid bias

in favor of parses involving fewer rules or equivalently smaller trees. Therefore,

n

P(T) = ([T plaip*/" 9)

i=1
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2.2 Two-level Probabilistic Context-Free Grammar (two-level
PCFG)

Two-level PCFG is an extended version of PCFG, deriving from the idea of providing
context-sensitivity for a context-free grammar.

In the original PCFG model, the probability of a parse derivation (T") is regarded as the
product of probabilities of the rules which are employed for deriving that parse derivation.
Each production rule of the grammar (r;) is of the form < A — «a, P(r;) > where P(r;) is the
associated probability, and the probabilities associated with all rules with a given nonterminal
A on the left-hand side must sum to one. P(«a|A) is the probability of a rule whose left-hand
side nonterminal symbol is “A”, and the right-hand side “«” is a sequence of terminal and/or

non-terminal symbols. Therefore,

Y Plald) = 1 (10)

Lo = [re (11)

where P(r) corresponds to P(a|A).
Two-level PCFG utilizes extra information provided by the parent of nonterminals in ex-
panding rules (r;) through assignment of rule probabilities. Thus, the rule probability in

equation (10) can be rewritten as:
Y Plalp(4)) =1 (12)
where p(A) is the nonterminal that immediately dominates A (i.e. its parent).

2.3 Probabilistic Generalized LR (PGLR)

Inui et al. (Inui et al. 1997) recently proposed a new formalization of a probabilistic model
for GLR parsing. Unlike B&C, a parse derivation is regarded as a sequence of transitions
between LR parse stacks (T') as shown in (13), where o; is the stack at time #;, a; is an
action, and /; is an input symbol. Schema (13) shows the inherent diversion from B&C in the

definition of parse derivation.

l1,a1 l2,az ln—1,8n-1

0p) = 01 = ... =  0Op_1 EE On (13)

Based on the above definition, the probability of a complete stack transition sequence T’

can be represented with equation (14), by assuming that o; contains all the information of its
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preceding parse derivation:-
n

P(T) = [[ PUi, ai,06l0i1) (14)

i=1

To estimate each transition probability P(l;,a;,0;|0i—1), we decompose it to:
P(li,ai,0il0i1) = P(liloi—1) - Pailoi—1,1;) - P(oiloi1,1i,a;) (15)

By the nature of GLR parsing, the stack o; is determined if the previous stack o;_1, the
next input symbol /; and action a; are given. Therefore, the term P(o;|0;-1,1;, a;) is equal to
one. We hence have to estimate only the terms P(l;|o;—1) and P(a;|oi—1,1;).

The first term P(l;|o;_1) is a conditional probability for estimating an input
symbol /;, given the current stack o; ;. According to the LR parsing algorithm, the in-
put symbol after applying a reduce action remains unchanged. Therefore, we have to consider
P(l;|loi—1) separately in terms of the actions that are applied to reach the stack o;_1:

(1) If the previous action a;_ 1 is a shift action, and we assume that the stack-top state

represents the stack information beneath it, then

P(li|0i,1) ~ P(ll|8171) (16)

(2) If the previous action a;_; is a reduce action, the input symbol is not changed.
Therefore,

P(liloi—1) =1 (17)

The second term P(a;|0;_1,l;) is a conditional probability for estimating an ac-
tion a;, given the current stack o; ; and input symbol /;. By the same assumption as
applied above, that the stack-top state represents the stack information beneath it, this term

can be estimated by:

P(ailoi—1,l;) =~ P(a;|si—1,1;) (18)

The first term in transition probability (15) is estimated differently depending on the type
of action applied to reach the current stack. Therefore, we divide states into two classes, name-
ly the class of states reached after applying a shift action (Ss), and the class of states reached
after applying a reduce action (S,). Fortunately, these two classes are mutually exclusive
because state transition in LR parsing is representable by a deterministic finite automaton?
(DFA). A state can be reached by a unique grammar symbol, which distinguishes states that

are reached by a terminal symbol from states that are reached by a non-terminal symbol.

2 A deterministic finite automaton has at most one transition from each state on any input.
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Therefore,

S=8;US,and S;NS,. =10 (19)
To summarize, the transition probability can be rewritten as:

P(l;|si-1) - P(as|si—1,1;) = P(l;, a;|si- i—1 € S
Planmon 1y 4 P Pl = Pl sy
P(ag|si—1,1;) (si_1 € 8,)

such that:

Z Z pla) = 1 (for s € Sy) (21)

l€La(s) acAct(s,l)
pla) = 1 (forseS,) (22)
aEAct(s,l)
where p(a) is the probability of an action a, S is the class of states reached after applying a
shift action, including the initial state, and S, is the class of states reached after applying a
reduce action.
The probability of a parse derivation is the product of the probabilities of the actions

(p(a;)) for stack transitions across the whole parse derivation:-
P(T) = [ p(a:) (23)

3 Experimental Results

We evaluated the various probabilistic models (i.e. B&C, two-level PCFG and PGLR) on a
portion of the ATR Japanese corpus, called the Spoken Language Database (SLDB) (Takeza-
wa 1997). Given an input string of Japanese characters, each model produces probabilistically
ranked parses together with the associated parse probabilities, computed as described in Sec-
tion 2.

As the dictionary to generate word candidates and their corresponding parts-of-speech, we
collected all the words used in the corpus. Each word in the dictionary retains lexical proba-
bility P(w]|l), which is the probability of generating word ‘w’ from an arbitrary part-of-speech
.

Each model was trained equally with the same hand-annotated training set. For unseen
events, we simply added part of a count to smooth the model probabilities. Evaluation of the
smoothing method is beyond the scope of this paper. We additionally present the results of

the original PCFG framework as the baseline for the evaluation.
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3.1 ATR Corpus and Grammar

The “Spoken Language Database” (SLDB) is a treebank (a collection of trees annotated
with a syntactic analysis, or “trees” for short) developed by ATR based on Japanese dialogue.
A portion of the corpus has been revised through application of a more detailed phrasal gram-
mar developed by Tanaka et al. (Tanaka, Takezawa, and Etoh 1997). We randomly selected
about 5% of the revised corpus to use as a test set and trained each parsing model with the
remaining approximately 10,000 trees. Table 1 describes a breakdown of the corpus. The
range and average of sentence length in both the training and test sets are very close, from

which it is plain that the test set was appropriately selected from the corpus.

Table 1 The ATR Corpus.

# of Morphemes | # of Characters
ATR Corpus | # of Sent. | Range | Average | Range | Average
Training set 10,361 1-34 6.69 2-58 12.57
Test set 545 1-22 6.36 2-42 12.03

We implemented all the models using a GLR parser. We generated an LALR table from
the treebank governing context-free grammar of 762 production rules, comprised of 137 non-

terminal symbols and 407 terminal symbols. The generated LALR table contained 856 states.

3.2 Parsing the ATR Corpus

We used PARSEVAL measures (Black et al. 1992) to compare the performance of the
top-ranked parses for each model.

Table 2 shows that the PGLR model outperformed the other models in every metric. Look-
ing at the metrics of BP, BR, 0-CB and m-CB, where all structure labels are ignored, every
model returned very good results (> 93%). The disparity between models becomes significant
when bracket labels are taken into consideration, such as in LP/LR and PA. Therefore, the
difficulty lies not in bracketing but in labeling, including determining pre-terminals which is
an essential task in character-based parsing.

One reason for this is that, the context-free grammar used for this corpus is relatively
restricted in terms of terminal assignment. Information about word form (e.g. sahen-meisi—
Sino-Japanese verbal noun), post position (e.g. -/ga and -/ni), for example, is explicitly
included in non-terminal symbol labels. Therefore, word connection constraints within the

rules can somehow exclude the invalid word combinations. Results from our preliminary test
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Table 2 Performance on the ATR Corpus. PA is the parse accuracy and indicates the
percentage of top-ranked parses that match standard parses. LP /LR are label
precision/recall. BP/BR are bracket precision/recall. 0-CB and m-CB are
zero crossing brackets and mean crossing brackets per sentence, respectively.

2-42 Characters (545 sentences)

Models PA LP LR BP BR | 0-CB | m-CB
B&C 88.62 | 97.72 | 97.50 | 98.48 | 98.05 | 93.94 0.15
Two-leval PCFG | 62.39 | 96.28 | 95.32 | 98.61 | 97.38 | 95.23 0.10
PCFG 53.03 | 95.67 | 94.54 | 98.77 | 97.35 | 94.86 0.08
PGLR 95.23 | 99.08 | 98.50 | 99.54 | 98.76 | 98.53 0.03

15-42 Characters (160 sentences)

Models PA LP LR BP BR | 0-CB | m-CB
B&C 73.75 | 96.00 | 97.26 | 96.84 | 98.14 | 83.75 0.44
Two-level PCFG | 56.25 | 97.44 | 97.31 | 98.90 | 98.76 | 93.13 0.18
PCFG 35.62 | 95.86 | 95.64 | 98.60 | 98.39 | 90.63 0.17
PGLR 90.00 | 98.98 | 98.99 | 99.49 | 99.50 | 96.25 0.08

on part-of-speech input sequences showed that structural ambiguity hardly occurred. Most of
the sentences had no ambiguity. From this study, it was observed that most of the sentences
had only one parse if the parts-of-speech of the words in that sentence were defined. The
ambiguity increases, however, when we consider parsing input strings of characters.

The average parse base® (APB) of the test set is as high as 1.348 in the character-based
measure. This is comparable with the SUSANNE corpus (1.256) and SEC corpus (1.239), as
reported in (Briscoe and Carroll 1995). Therefore, the performance of character-based pars-
ing in this test mainly depends on the accuracy of selecting words and their corresponding
parts-of-speech. This means that a model that can provide local context in addition to the
global context would result in higher performance.

As expected, the models which make effective use of the local context modeling nature of
GLR parsing, namely B&C and PGLR, returned significantly better results than PCFG-based
parsing. Although the PCFG rule context in two-level PCFG extends a step higher (i.e. to

the parent of the reduced rule), the model still failed to include appropriate context in some

3 Briscoe and Carroll (Briscoe and Carroll 1995) defined APB as the measure of ambiguity for a given corpus.
It is the geometric mean over all sentences in the corpus of {/p, where n is the number of words in a sentence,
and p is the number of parses for that sentence.
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cases. One such case is shown in Section 4.

Parse accuracy (PA) shows the percentage of correct parses that are ranked topmost ac-
cording to the model probability. By this measure, PGLR maintained the highest accuracy
in ranking parses, while the PCFG-based models dropped down to slightly higher than 50%.
Since the corpus is a kind of spoken language database, there are a lot of short response ut-
terances i.e. “yes”, “no” and “take care”. The lower table in Table 2 is added to show the
performance on sentences ranging from 15 to 42 characters. The difference in performance
becomes obvious in parsing longer sentences.

Parse performance partly depends on the grammar and the corpus. According to the report
of an experiment on the SUSANNE English corpus by Carroll (Carroll 1997), the difference
between the performance of PGLR and B&C was not significantly observed. However, the
input test set was a set of part-of-speech sequences, excluding ambiguity in word and part-
of-speech selection. Even here, though, PGLR returned the best result in terms of the m-CB

metric.

4 Discussion

It is obvious that two-level PCFG shows the benefits of context-sensitivity and yields signif-
icant gains over the original PCFG model. However, the results are still far below those for the
probabilistic GLR-based parsing models. One reason would be the advantages of local contex-
t, i.e. pre-terminal n-gram constraints encoded in the LR table. The n-gram constraints are
distributed over the actions of the table. Therefore, the parse trees generated by probabilistic
GLR-based parsers include pre-terminal n-gram constraints in the parse probabilities.

The example below shows that probabilistic GLR-based parsing can successfully exploit
the advantages of pre-terminal n-gram constraints, and assign parse probabilities in a more
accurate manner. Based on Grammar-1, the three parse tree types in Figure 1 can be generat-
ed. Supposing that (S1) and (S2) are found one and two times respectively in our training set,
but (S3) does not occur. (S3) can be found very rarely, or alternatively never occur because
it may have no obvious meaning. This actually happens for most wide-coverage grammars.

The case shown in Figure 1 is simplified from one of the cases we have found in our test
set. It is the case of selecting the appropriate part-of-speech for a sentence-ending word “su”,
which can be “infl-masu-su” or “infl-desu-su”. It must be assigned “infl-masu-su”, if it follows
a word “ma” having the part-of-speech of “auxstem-masu”, and assigned “infl-desu-su” if it
follows a word “de” having the part-of-speech of “auxstem-desu”. In this case, only the pre-

terminal n-gram constraints are effective, rather than the constraints from the parent node
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which are the same in both cases. In Figure 1, ‘a’, ‘b’ and ‘c’ correspond to “auxstem-masu”,

“auxstem-desu” and “infl-masu-su”, respectively.

Grammar-1. A context-free grammar.

(1) X =
2 X -
3 U -
4 U —

U ¢

U
U c I|J I|J c
a b b

(81)[1] (82)[2] (83)[0]

Fig. 1 Parse trees, with the frequency in the training set shown in brackets.

Probability-1.

(1 s ;X
2) s ;X
3 X ;U
4) X ;U

Rule probabilities for two-level PCFG.

%

%

%

%

U
U

C

(1/3)
(2/3)
(1/3)
(2/3)

The bracketed values given for Probability-1 are the rule probabilities estimated according

to the two-level PCFG model from the training set in Figure 1. In fact, they are the same

as for PCFG because the parents of rules (1) and (2) are not different, and neither are the

parents of rules (3) and (4). This means that the extended context in two-level PCFG does

not have any effect if direct parents are the same. We need more information to distinguish

the cases. Unfortunately, however, there are no other parent nodes in this case.

Table 3 is an LALR table generated from Grammar-1. The associated probabilities below

each action are estimated according to B&C and PGLR, indicated in the first and second

lines of each state row, respectively. For the sake of brevity, we do not consider any smoothing

technique in this table, although smoothing was performed in the experiments described in

Section 3.
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Table 3 The LALR table with its associated probabilities. Probabilities in the first line
of each state row are those estimated by B&C and the bracketed values in the
second line are those estimated by PGLR.

Action Goto
State a b c $ U | X
0 sh3 sh2 1| 4
1/3 2/3
(1/3) | (2/3)
1 shb | re2
1/2 | 1/2
M | @
2 red | red
0 1
© | ()
3 re3 | red
1 0
W | ©
4 acc
1
(1)
5 rel
1
(1)

Applying the probabilities prepared in Probability-1 for two-level PCFG (as well as PCFG),
and Table 3 for B&C and PGLR, to estimate the parse probabilities of (S1), (S2) and (S3)
in Figure 1, we obtain the results shown in Table 4. Two-level PCFG (and PCFG) wrongly
assigned preference to (S3) over (S1), whereas (S3) never occurs in the training set. Although
B&C yields correct preference, the probabilities are smaller than what they should be. In this
case, there is no difference between B&C and PGLR in ranking the parses. The side-effects of
inappropriate normalization of probabilities in B&C has already been explored in (Inui et al.

1997) and empirically confirmed in the evaluation in Section 3.

Table 4 Probabilities of parse trees, (S1), (S2) and (S3), estimated according to each model.

Models (S1) | (S2) | (S3)
PCFG 1/9 | 4/9 | 2/9
Two-level PCFG | 1/9 | 4/9 | 2/9
B&C 16 | 1/3 | 0
PGLR 13 | 2/3 | 0
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5 Comparative Results for LALR and CLR Table-based
PGLR

Canonical LR (CLR), or LR with one lookahead, is the most powerful and the most ex-
pensive. In the LR table generating process, one lookahead symbol is taken into account by
adding as the second component in constructing an item, where the first component in the
item is a dot notation, called the core of the item. An LR item of a grammar G is a production
of G with a dot at some position of the right side.

Table 5 (Aho et al. 1986) shows the CLR and LALR tables generated from the same
grammar. It is obvious that the LALR table requires fewer states than the CLR table does.
According to the process of generating the LALR table, state 1 and 6, state 2 and 7, and state
5 and 9 in the CLR table are merged to be state 1, 2 and 5, respectively, because they have

the same core in their LR item.

Table 5 The CLR table and the corresponding LALR table, generated from the same grammar.

[CLR table] [LALR table]
Action Goto Action Goto
State c d $ S| C State c d $ S|C
0 shl | sh2 3| 4 0 shl | sh2 3| 4
1 shl | sh2 5 1 shl | sh2 5
2 re3 | red 2 re3 | red | red
3 acc 3 acc
4 sh6 | sh7 8 4 shl | sh2 6
5 re2 | re2 5 re2 | re2 | re2
6 sh6 | sh7 9 6 rel
7 red
8 rel
9 re2

Consequently, the degree of context sensitivity when parsing with an LALR and CLR table
can be different, and the left context encoded in states in an LALR table can be decreased
compared with that for states in a CLR table. However, the tremedous number of states in the
CLR table can cause the data sparseness problem. To verify our PGLR model on both tables,
we thus extended our experiment to examine the performance of PGLR using an LALR table
(PGLR(LALR)) against using a CLR table (PGLR(CLR)).

The CLR table contained 3,715 states, more than fourfold the number of states in the
corresponding LALR table (856 states) for the same ATR Japanese grammar. Table 6 shows
that PGLR(LALR) returned slightly better results than PGLR(CLR). However, the difference
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is not statistically significant.

Table 6 Performance on the ATR Corpus. Comparative results for PGLR using an LALR
and CLR table.

2-42 Characters (534 sentences)

Models PA LP LR BP BR | 0-CB | m-CB
PGLR(CLR) | 95.13 | 99.04 | 98.40 | 99.46 | 98.61 | 97.57 0.04
PGLR(LALR) | 95.32 | 99.06 | 98.47 | 99.53 | 98.73 | 98.50 0.03

Based on the above, we may conclude that, empirically, PGLR using an LALR table can
perform as well as one using a CLR table. State merging in generating an LALR table does
not affect the parsing context a great deal. On the contrary, the drastic increase in states for
the CLR table causes parameter sparseness. In PGLR, we distribute parse probabilities to
each action appearing in the table, so that the number of training parameters is identical to
the number of distinct actions in the LR table.

Compared with PGLR using a CLR table, the percentage of trained actions for that using
an LALR table increases more significantly, as shown in Figure 2. The percentage of actions
(both shift and reduce) in the LALR table observed in parsing the training set is around three
times higher than in the CLR table. This means that actions in the LALR table are trained
more effectively than those in the CLR table. Although the number of trained actions tends to
increase as the number of training sentences is increased, the number of actions observed only
once in training becomes saturated at an early stage of training, with most of the observed
actions repeated in the expansion of the training set. Perhaps most of the actions in the LR
tables are not really used, though they are allowed under the original context-free grammar;
this is especially the case for reduce actions with a very low learning curve. It may be pos-
sible to generate a more efficient LR table if we can drop the actions that cause the parser
to generate practically unacceptable parses. However, it is beyond the scope of this paper to
discuss this possibility.

Figure 3 explicitly shows that with a small training set, the results when using an LAL-
R table are better than when using a CLR table. Training the model with only 1/8 of the
training set, or about 1,250 sentences, PGLR(LALR) returned a parse accuracy as high as
90%, while PGLR(CLR) needed more training sentences to catch up with the performance of
PGLR(LALR).

In the sense of context-sensitivity, states in a CLR table are more distinguishable than
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Learning curve of the actions in PGLR using an LALR table
(total of 11,445 shift and 164,058 reduce actions)
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