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Efficient Direct ID/LP Parsing with Generalized
Discrimination Networks and Hasse Diagram

SuraPANT MEKNAVIN,! Manasu OkuMura ' and Hozumi Tanaka !

We present a new parsing method using 1D/LP rules directly without transforming them to
context-free grammar rules. The method regards parsing as traversal of the generalized discrimina-
tion networks and represents the parsing states as nodes in the networks. This can yield more
compact representation of the parser's state sets compared with previous methods and hence more
wasteful computations can be avoided. We also optimize LP rules checking so that it can be checked
efficiently. ‘Our parsing strategy is a variant of the chart method which is customized to match ID/
LP rules. Using this strategy, a large amount of overhead in processing can be omitted. Comparisons
of our method with other related works are also described.

1. Introduction

Variations of word order are among the most
well-known phenomena of natural languages.
From a well represented sample of world lan-
guages, Steel'® shows that about 76% of lan-
guages exhibit significant word order variation.
In addition to the well-known Walpiri (Aus-
tralian language), several languages such as
Japanese, Thai, German, Hindi, and Finnish
also allow considerable word order variations.
It is widely admitted that such variations are
governed by generalizations that should be ex-
pressed by the grammars.

Generalized Phrase Structure Grammars
(GPSG)® provide a method to account for these
generalizations by decomposing the grammar
rules into Immediate Dominance (ID) rules and
Linear Precedence (LP) rules. Using the ID/
LP formalism, flexible word order languages can
be more easily and consisely described. How-
ever, like other highly modular frameworks,
designing an efficient algorithm to put the vari-
ous components back in parsing is a difficult
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problem. There have been many efforts to
develop efficient implementations of ID/LP
parsers. Given a set of ID/LP rules, one alterna-
tive for parsing is to compile it into another
grammar description language, e.g. Context-
Free Grammars (CFG), for which there exist
parsing algorithms. However, this approach
lacks of the naturalness, especially for flexible
word order language, in the sense that they do
not take the language generalizations in the
grammars into account while parsing. Also, this
loses the modularity of ID/LP formalism.
Moreover, the received object grammar tends to
be so huge that the parsing time can increase
dramatically.

Another set of approaches!**2*9 tries to parse
directly by using ID/LP rules as they are with-
out transforming to other formalisms. Shieber!4
proposed an interesting algorithm of direct 1D/
LP parsing by generalizing Earley's algorithm?
to use the constraints of ID/LP rules directly.
Barton® showed that Shieber’s direct parsing
algorithm usually does have a time advantage
over the use of Earley’s algorithm on the expand-
ed CFG. Thus the direct parsing strategy
appeals to be an interesting candidate for pars-
ing with ID/LP rules from the computational
and natural viewpoints.

In fact. the reason that Shieber's algorithm
wins over parsing on expanded CFG is mainly
by virtue of the multiset representation of the
states that can reduce the number of intermediate
states drastically in average cases. However,
Shieber’s algorithm may still suffer from the
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combinatorial explosion of the number of inter-
mediate states while parsing. Although this
cannot be avoided because ID/LP parsing is
proved to be NP-complete® and thus can blow
up in the worst case, it does not preclude us from
algorithms with better average performance.

In this paper, we present a new approach for
direct ID/LP rules parsing that outperforms the
previous methods. Three features contribute to
its efficiency. First, ID rules are precompiled to
generalized discrimination networks'V to yield
compact representation of parsing states, hence
less computation time. Second, LP rules are also
precompiled into a Hasse diagram to minimize
the time used for the order legality check at run
time. And, third, its parsing strategy is based on
the Word Incorporation (WI) algorithm?!®
which is a specialization of the chart algorithm
with less edge processing required.

2. ID/LP Grammar Formalism

One of the most explicitly formulated and
well-known theories of linear precedence in
natural language is the Immediate Dominance-
Linear Precedence (ID/LP) theory first
proposed by Gazdar and Pullum, and slightly
modifed in Ref. 8). They observed that the
standard formalism of Context-free Phrase Struc-
ture Grammars (CFPSG) fail to express gener-
alizations about linear order that natural lan-
guages appear to exhibit. They propose to
account for the existence of LP generalizations
by changing the form in which grammatical
rules are written into two sets of rules : Immedi-
ate Dominance (ID) rules and Linear Prece-
dence (LP) rules. The former simply state what
constituents may appear as the daughters within
a given constituent, while the latter specify con-
straints on the order in which those daughters
may appear in constituent structures admitted by
any rule. Consider the following example gram-
mar (G, that has only one ID rule and one LP
rule:

Go:
S—'m a, b, c, d

a<lc

The ID rule says that categories a, b, ¢ and d
can be immediately dominanced by category S.
However, it does not say anything about the
linear order in which a, b, ¢ and d must occur
under §. Instead, the LP rules impose the
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constraint using an antisymmetric, transitive
relation <. In this example, it means that a
must precede c¢ in the local tree induced by the
ID rule above.*

To use ID/LP rules in parsing, one alternative
is to compile ID/LP rules into an object gram-
mar with a more familiar format like CFG. The
object grammar can then be parsed using any
algorithms already existing for that kind of
grammar formalism. However, the size of object
grammar may grow exponentially after the
expansion and can actually dominate complexity
for a relevant range of input lengths. To get
some idea of this, consider what happens if we
compile the above grammar G, into CFG. The
corresponding CFG Gg will have 4!/2=12 rules
spelling out all possible strings formed by a, b,
¢ and d, whose a is prior to c.

Gg .
S—a b, c, d S—a,b d ¢
S—a,c b, d S—a,c,d b
S—a,d, b, c S—a,d, c. b
S—b,a,cd S—b,ad,c
S—b,d, a,c S—d, b, a,c
S—d,a b, c S—d,c a b
Given the disadvantage of the above

approach, direct parsing on ID/LP grammars
seems to be a more attractive method. Shieber
shows how to modify Earley’s algorithm for
parsing CFG to use the constraints of ID/LP
grammars directly, without the combinatorially
explosive step of grammar conversion. Dotted
rules in the original one are replaced by so
called dotted UCFG (Unordered Context-Free
Grammar) rules which represent the elements
after the dot with multiset instead of an ordered
sequence of them. This can be an advantage
because instead of expanding all surface appear-
ances ahead of time, Shieber's algorithm works
out the possibilities one step at a time, as needed.
For example, if Shieber’s algorithm is used to
parse the string abcd according to G, the state
set of the parser after a is entered contains only

single one state :

[S—a-{b.c, d},0]

In contrast, using original Earley’s algorithm
to parse the same string on the expanded CFG
generates 6 states for all possible orders of the
remaining symbols :

% More precisely, x <y means y cannot appear to the
left of x in a local tree.
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[S—a-bcd, 0]
[S—a-bdc, 0]
[S—a-cbd. 0]
[S—a-cdb, 0]
[S—a-dbe, 0]
[S—a-dcb, 0]

As seen, the representation of the elements in
a rule as the multiset helps a lot in reducing the
number of states by keeping many possible
orders of unseen symbols unexpanded in the
multiset. If the cost of LP rules checking can be
neglected, the cost of Shieber’s algorithm will
then depend on the number of the states in the
state sets and Shieber’s parser should thus be
faster. As noted by Barton,* despite its potential
of blowing up due to the inherent difficulty of
ID/LP parsing. Shieber’s direct parsing algo-
rithm wins out over the use of an expanded
object grammar that blows up unnecessarily.

The multiset representation in Shieber’s algo-
rithm saves a lot by keeping many possibilities
unexpanded in a dotted UCFG rule. In next
section, we present the method that can further
save more with its compact rule representation
as generalized discrimination network.

3. ID Rules as Generalized Discrimina-
tion Networks

In this section, we will describe how 1D rules
are treated in our approach. At first, we will
describe about the discrimination network and
how it can be related with ID rules. We also
discuss the merit and problem of using the
discrimination network. Then we go on describ-
ing how the problems are solved by using the
generalized discrimination network.

3.1 Discrimination Network’s Merit and

Problem

Given a set of constraints defining a concept,
one can build a corresponding discrimination
network used to check that concept efficiently.
Considering the ID rules with the same LHS
(Left Hand Side) element as a set of constraints
to construct that constituent structure, we can
thus represent such a set as a discrimination
network by viewing the existence of each ele-
ment in RHS (Right Hand Side) of those ID
rules as a discrimination constraint in the net-
work. Figure 2 shows a discrimination network
of the ID rules in the grammar G, shown in Fig.
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S—mp a, b, C, d
S—mpabe f
a, b, c<d
b<c
a e<f

A~~~
DN oA WN -
Nt Nt N

Fig.1 An example ID/LP grammar: G,.

Identifier Bit Vector
B
a <« Constraint
(11]eq)
b
!lll Oi?

£

[1111]o110] [1112]0110]

d f
[o1111]01110] [0112d 01110]

Fig.2 Discrimination network representation of ID
rules with identifier and bit vector assigned to
each node.

1. For a RHS element denoted by«jtalic letter,
like @, we denote the constraint of its existence
by its bold letter, like a. Representing such rules
by a discrimination network has the merits that
we can use the states in the network to track the
progress of parsing and this can delay rules
expansion as by using Shieber’s data structure.
However, since a discrimination network is
constructed with the set of ID rules with the
same LHS element, we can also compact RHS
elements of the same form in different rules into
one arc in the network. This yields more com-
pact rules representation, especially when there
are many rules for a category, and wasteful
recomputation can be avoided. Shieber’s repre-
sentation, in contrast, considers each single ID
rule separately and hence cannot capture this
kind of compactness. For instance, consider the
grammar G;. Two ID rules in the grammar have
a and b in common, so their corresponding
constraints can be merged together into common
arcs labeled a and b in the discrimination net-
work, as shown in Fig.2. If, for example, the
first symbol of input is a, there will be two
possible parses, corresponding to each ID rule.
Using discrimination network, the two parses
can be represented as a single node which is
linked to the arc labeled a. On the other hand,
using Shieber’s representation. one must still
represent the two parses separately as [S—a-{b,
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¢, d},0] and [S—a-{b, e, f},0].

Up to now. everything seems to go on nicely
without any obstacle. However, traditional
discrimination network has a problem in that it
cannot be traversed unless constraints are enter-
ed (satisfied) in an a priori fixed order. For
example, in this case, if the first symbol is the
symbol other than a the traversal would be
suspended. This is to say that the traditional
discrimination network is rather suited for con-
ventional grammar rules that fix the order of
RHS elements, but may be in trouble with
order-free characteristic of ID rules.

3.2 Generalized Discrimination Network

Okumura and Tanaka'" propose the method
of generalized discrimination networks (GDN)
to solve the problem described above. GDN is
a generalization of a discrimination network
which can be traversed according to the order in
which constraints are obtained incrementally
during the analytical process, independently of
order. The technique is to assign each node in
the network a unique identifier and a bit vector,
as illustrated in Fig. 2. The leftmost digit of an
identifier of a node v indicates whether the node
is a leaf or not, ‘0" for being a leaf and ‘I’ for
being a non-leaf. This digit is followed by the
sequence S (v), which is the concatenation of the
sequence S (#) and the integer k, where u is the
immediate predecessor of v and arc u-v is the
kth element in the ordered set of arcs issuing
from u.* Note that the identifier of the root
node # has only the first leftmost digit (S () is
null).

To each node identifier, a bit vector is
attached. The bit vector has the same length as
its associated identifier and consists of I's in
every bit except the leftmost and rightmost bits.
For example, as shown in Fig. 2, identifiers 1,
11, 111,1112 and 01121 are attached with the bit
vectors 0, 00,010,0110 and O1110 respectively.
The reason for this assignment will be explained
shortly.

Next, constraint-identifier pairs are extracted
from the network in the following form: a
branch and the subordinate node which is direct-
ly connected by that branch, as shown in Table
1. This correspondence between constraint and
identifier means that if a constraint is satisfied.

# The encoding used here is a little different from the
original one in Ref. 11).
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Table | Correspondence between constraint
and identifier.
constraint identifier

a 11

b 11

c 1111

d 01111

e 1112

f 01121

the node of corresponding identifier can be
reached in the network. For example, if con-
straint b is satisfied, the network can be traversed
downward to the node of corresponding iden-
tifier 111.

The bit vector attached to each identifier is for
representing the positions of the unsatisfied con-
straints in the network. A bit of 0 or | indicates
that the corresponding constraint is satisfied or
unsatisfied respectively. The leftmost bit has no
corresponding constraint and exists just to make
the vector length the same as that of the
identifier. Other bits from left to right corre-
spond to the constraints from the root node to
the reached node respectively. The rightmost bit
corresponds to the constraint of the branch
directly linked to the reached node and is thus
always O to represent the satisfaction of the
constraint.  (Otherwise, the node cannot be
reached.) All the remaining ‘I’ bits indicate that
other constraints between the root node and the
reached node are not yet satisfied.

For example, in the case above where the
constraint b is satisfied, the reached node’s
identifier 111 has the corresponding bit vector
010. The satisfaction of constraint b is represent-
ed by the rightmost bit whose value is O.
However, to traverse from the root node to node
111, in addition to constraint b, constraint a
must also be satisfied. This condition is express-
ed by the second bit from the left of the vector
whose value is 1. That is to say, the reachability
of node 111 is ‘conditional’ in that the node can
be reached if constraint a is satisfied. Similarly,
in the case where the constraint f is satisfied,
according to Fig. 3, the reached node identifier is
01121. Its attached bit vector 01110 signifies
that, to reach the node constraints a,b and e
(which correspond to the second, third and
fourth bit from the left) are left to be satisfied.
The rightmost ‘0’ bit represents the satisfaction
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of constraint f.

The discrimination process, viewed as traver-
sal of the network incrementally downward to
the leaf nodes, can then be represented by a
‘state’ which is defined as an ordered-pair of
node’s identifier and its associated bit vector.
The initial state is at the root node (where no
constraints are obtained), thus it has 1’ as its
identifier and ‘0’ as its bit vector and denoted by
<1, 0> . When a constraint is entered, constraint-
identifier table is used to find the identifiers of all
possible nodes which can be reached if the
constraint is satisfied. These identifiers together
with their bit vectors form a set of states. By
applying the operation between the current state
and these states, we can find all possible states
that are reachable from the current state. An
operation between two states consists of the
following operations :
operation between identifiers: Ignoring the

leftmost bit, if one identifier includes the other

as a prefix-numerical string, return the longer
string. Otherwise, fail ;

operation between bit vectors : After adjusting
the length of bit vectors by attaching I’s to the
end of the shorter vector, return the bit vector
for which each bit is a conjunction of the bits
of two bit vectors.

The operation between identifiers checks
whether one node can be reached from the other
in the network. From a node A, only identifiers
of reachable nodes below can include the
identifier of A as a prefix string. For example.
consider Fig. 2. From node 1112, node 01121 is
reachable by satisfying constraint f, but it is
impossible to reach node 01111 on any account.
If one node is reachable from the other. the
identifier of the subordinate node is returned.

The operation between bit vectors allows us to
cope with the free order of constraints. As
explained above, the bit vector represents all the
constraints that must be satisfied between the
root node and the reached node. By taking the
conjunction of bits of these vectors, which repre-
sent the satisfied constraint as 0, bits of the
resultant vector are incrementally changed to 0.
If all vector bits are 0, it means that all con-
straints are satisfied and the network can be
traversed to the reached node unconditionally.
Because the bit conjunction operation is executa-
ble in any order, it is possible to cope with an
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arbitrary order of constraints.

As an example, let us consider the traversal
where constraints are obtained in the order of b,
e, a, f. After constraint b is obtained, the next
state is computed by the operation between the
initial state <1,0> and the state corresponding
to constraint b <111,010>. Ignoring the leftmost
bit, as null string is a prefix of any string, the
operation between identifiers | and 111 succeeds
and return 111. The operation between bit
vectors 0 and 010 is performed by attaching 1's
to the end of 0 to yield the bit vector Ol1, and
taking the bit conjunction between 011 and 010.
This yields the bit vector 010. As the result, the
next state after b is obtained becomes the state
<111, 010>.

Computing in the same way, we will get the
state <1112,0100> after constraint e is entered,
the state <1112,0000> after constraint a is
entered and the state <01121.00000> after
constraint f is entered. Note that because the last
state is at a leaf node and all vector bits are 0, the
discrimination process is complete with all con-
straints satisfied.

Using this technique, we need not check the
constraints in the order as in the network
because we can reach any node even though
there must be some not yet satisfied constraints
between it and the root node by just representing
those constraints by ‘I’ bits in its bit vector.
Thus we can cope with an arbitrary order of
entered constraints. Provided with this charac-
teristic, we can represent the ID rules as the
GDNs and the parsing process can then be
naturally considered as a traversal of the GDN
incrementally downward to the leaf nodes.

Note that the compilation of ID rules into
GDN format does not suffer from the explosion
of grammar size as in the case of the compilation
to CFG. A GDN can be viewed as a set of
optimized ID rules whose common parts are
shared. Its size, therefore, is kept small in the
same order as that of the original ID rules.

4. LP Rules as a Hasse Diagram

If a natural language has completely free word
order, we may simply use the GDN to represent
the language’s 1D rules and parse the language
easily. Unfortunately. in reality, a language
usually has some constraints on the word order,
as expressed by its LP rules. Therefore. to parse
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such a language, we have to take these con-
straints also into account. In this section, we
introduce the organization that can cope with
the linear precedence constraints of the LP rules.
The method is to code every relevant item by
distinct identiers and use them to check legality.
By embedding the precedence relation between
the items in the identifiers, we can check the
legality of a sequence of items efficiently.

4.1 Constructing the Diagram for a Set of

LP Constraints

Given a set of LP constraints, we can build the
corresponding so called ‘Hasse diagram’ to rep-
resent the precedence relations between the rele-
vant symbols. Hasse diagram is a representation
of a partially ordered set used in graph theory.!?
The process of constructing a Hasse diagram
from the given LP rules is explained below.

First, build a directed graph representing the
LP relations where a node represents a symbol
and an arc between two nodes represents the
precedence between them, where the direction of
an arc goes from the lower precedence node to
the higher one. For the LP rules in G,, we get
the directed graph in Fig. 3.

Next, we can simplify this graph into a Hasse
diagram by deleting unnecessary arcs and omit-
ting the arrowheads representing direction. In
Fig. 3, we can delete arc b-d because we know

b

Fig.3 The directed graph representing the precedence
between items.

10000
b
Fig.4 Hasse diagram with the identifier assigned to
each node.
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that <" is a transitive relation, and consequent-
ly, the existence of arcs b-c and ¢-d is enough
to imply the arc b-d. In addition. because we
know that the direction of the arrowheads
between nodes always go upward, all arrow-
heads can also be omitted. Figure 4 shows the
Hasse diagram for the graph in Fig. 3.

4.2 Coding the Precedence Vectors

After building the Hasse diagram for a given
set of LP constraints, we assign a precedence
vector to each node by the following algorithm.

Algorithm : AssignPrecedenceVector

Let A be the set of all nodes in a Hasse
diagram.

. Assign a unique bit as the flag of each

node in 4.

2. Compute the precedence vector of each
node by setting the flags of the node and
all its subordinate nodes to 1, and setting
others to 0.

As for this example, we assign (a)’s flag the
first bit, (b)’s flag the second bit,:--, and (f)’s
flag the sixth bit. As shown in Fig. 4, because
node a, b and e are minimal elements which
have no subordinate node, their precedence
vectors are set to | only at their own flags, as
000001, 000010 and 010000 respectively. To
calculate node ¢’s precedence vector, we set its
flag (third bit) and its subordinate node b’s flag
(second bit) to 1, resulting in a precedence
vector 000110. The precedence vectors of & and
f can also be calculated in the same way. The
resultant precedence vectors are shown in Fig. 4
with O’s in their left parts omitted.

4.3 Order Legality Checking

Now that each node has its corresponding
precedence vector, we can check the order legal-
ity of the corresponding symbols easily by the
algorithm below.

Algorithm : CheckOrder

Input : Precedence vectors Pre, and Prez of
symbols A4 and B, where A precedes B in the
input.

1. Take the bitwise disjunction between

Pres and Preg.

2. Check equality: if the result in 1. is
equal to Pre,, reject. Otherwise, accept
and return the result as the precedence
vector of the concatenated string AB.

For example, using the LP rules of G, we can
easily check that the sequence b. e, a, f is legal,
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b e a f
(000010) (010000) (000001) (110001)
000010 01001 1] 0K
b d ¢
(000010) (001111) (000110)
000010 ookln}T-loogul FAIL

Fig. 5 The processes checking the order legality.

while the sequence like b, d, ¢, a is not. The
check processes are shown in Fig. 5, where the
precedence vector of each symbol is shown in a
bracket and the current precedence vector of the
string is shown in a block.

Note that, in the encoding algorithm described
above, the precedence vector of a symbol A4 that
must precede a symbol B is always included in
B’s precedence vector. As a result, if A comes
behind B the disjunction of their precedence
vectors will be equal to B’s precedence vector.
The above algorithm thus employs this fact to
detect the order violation easily. Moreover, note
that all LP constraints concerning the symbols
concatenated are propagated with the resultant
string’s precedence vector by the result of dis-
junction. We can then use the algorithm to
easily check the legality of next input symbol
respective to all preceding symbols by checking
only with the resultant string’s precedence
vector. In real implementations, a word can be
used to represent a precedence vector and the
order legality can thus be checked efficiently, in
constant time, by using Boolean bitwise opera-
tions between words provided in most machines.

5. Parsing

5.1 Table for ID/LP Parsing

GDN can cope with any order of input con-
straints by referring to the table of constraint-
identifier which is extracted from the network by
collecting pairs of branches and their immediate
subordinate nodes. But, as described, GDN is
first proposed to handle the completely order-
free constraint system. So, in order to apply the
model to parse natural language of which word
order is restricted by some linear precedence
constraints, some modifications have to be done
to take those constraints into account.

First, the definition of a state is changed from
a 2-tuple <ld, BitV> 1o a 4-tuple <Cat, ld,

reduce(a, (S, 11,1,00)).

reduce(d, (S, 111, 10,010)).
reduce(c. (S, 1111, 110,0110)).
reduce(d, (S,01111, 1111,01110)).
reduce (e, (S, 1112. 10000, 0110)).
reduce(f, (S, 01121, 110001,01110)).

Fig. 6 Category-state table generated from ID/LP
rules: G.

Pre, BitV') where each element is defined as the
following :

Cat : the mother category of the state ;

Id : the identifier of the state;
Pre : the precedence vector of the state;

BitV : the bit vector of the state.

Because we have many networks for all
nonterminal categories in a grammar, Cat is
added to indicate which network the state
belongs to. Moreover, in addition to the ele-
ments for ID rules checking, the precedence
vector Pre is added for the sake of LP rules
checking.

Next, the constraint-identifier table is replaced
by the category-state table, notated as reduce
(category, state), viewing each category as a
constraint and using the new definition of a
state. This table will be used to reduce a constit-
uent to a higher level constituent state when it is
complete. A constituent is complete if its current
state is at a leaf node and all bits of BitV are set
to 0. Figure 6 shows the table derived from G;.

5.2 The Parsing Algorithm

Our parsing strategy is based on the Word
Incorporation (WI) algorithm with some
modifications to accommodate ID/LP formal-
ism. The WI algorithm can be viewed as a
specialization of the chart method. Traditional
chart parsing!® allows any arbitrary strategy of
selecting the next pending edge to combine with
the chart. The entered edge then may span any
vertices and create the edges already in the chart.
Since this can cause looping, the newly created
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edges have to be checked with the entire chart to
filter out the duplicated ones. The WI algo-
rithm. in contrast, is restricted to be solely
bottom-up and depth-first. This makes the
parsing proceed along the input in an ordely
fashion (say. left to right) and keep running at
a vertex until no more new edge ending at the
vertex can be generated. Once the parsing goes
beyond a vertex. the processing will never be
redone at that vertex again. As a consequence,
the edge check can be omitted and thus the
parsing time can be reduced significantly. Our
algorithm can be described as follows:

Algorithm : Parse

Given a category-state table 7 generated from
ID/LP grammar G, a dictionary D, a goal
category S and an input String s=wy Wy - W,
where w; is a terminal in G, we construct chart
as follows:

k—0;

while k <n do begin

1. Loop up D for the entry of w41 Span
the inactive (complete) edges correspond-
ing to every possible categories of wi4
between vertices k and k+1.

Now perform steps (2) and (3) until
no new edges can be added.

2. For each inactive edge of category S
spanned between vertices j and k+1(j<
k+1), if reduce(f, @) is an entry in T,
span the edge ¢ between vertices j and
k+1.

3. For each active (incomplete) edge of
category S spanned between vertices j
and k+1, search for active edge spanned
between vertices i and j(i<j). For each
one found, perform the check operation
between the two edges. If this succeeds,
add the resultant new edge between ver-
tices i and k+1.

4. ke—k+I1

end ;

The string is accepted if and only if there
exists some complete edges of category S span-
ned between vertices 0 and n in the chart.

Here, the check operation between two edges
(states) includes all of the following operations :
operation between Cats: If Cats are the same

then return Cat. Otherwise, fail ;
operation between /ds: As defined in 3.2;
operation between Pres: As described in
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CheckOrder algorithm ;
operation between BitVs: As defined in 3. 2.

The operation between Cats first checks
whether the two states are in the same network.
The operation between Ids then checks whether
one node can be reached from the other in the
network. The operation between Pres tests
whether the catenation of the edges violates LP
constraints and returns the precedence vector of
the successfully combinded edge as described in
section 4. The operation between BitV's allows
us to cope with the free order of constraints.
Example. Suppose we are given the string of
words to parse whose categories are b, e, a. f,
using grammar in Fig. 1. First, the edge <S§,
111, 10,010 is spanned between vertices 0O and
1. since the first element of the string is a b. No
more iterations of step 2 and 3 are possible, so
we move on to the next word. After category e
is obtained, its corresponding state <S, 1112,
10000, 0110)> is then operated with the state <S,
111, 10,010> . The operation between categories
succeeds because both states have the same cate-
gory S. The operation between identifiers 111
and 1112 succeeds because 111 is a prefix of
1112, thus 1112 is returned. The operation
between precedence values 10 and 10000 also
succeeds because the bitwise disjunction of them
yields 10010 which is not equal to 10. Last, the
operation between bit vectors 010 and 0110
returns the result of conjunction between 0100
and 0110 which is thus 0100. So the above
operations yield the resultant state <S, 1112,
10010, 0100> as the edge spanned between
vertices 0 and 2.

Continuing in this manner, we will get <S§,
1112, 10011, 0000> between vertices 0 and 3, and
<S.11121. 110011, 00000> between vertices 0
and 4. Because the latter is a complete edge of

/—'

/ (s,1112,10011,0000)

(5,01121,110011,00000)

(S,1112,10010,0100)

f(s 111, (s,1112,
® 10,010) [10000,0110) (s,11,1,00)

(S,011213
110011

Fig. 7 Chart of parsing beaf.
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goal category ‘S’. the input string is thus
accepted. The chart is shown in Fig. 7.

6. Comparison with Related Works

To compare our method with Shieber’s, both
methods have the same worst-case space com-
plexity : O(2'°), where |G| denotes the size of
the grammar G. This combinatorial explosion
of data structure is due to the inherent difficulty
of ID/LP parsing. However, our method tends
to perform better in general case, as it needs less
bookkeeping of intermediate states and checks
LP rules more efficiently.

Other than -Shieber’s work, there are many
works in the past concerning ID/LP
parsing. 235913 popewich’s FIGG!® treats ID/
LP rules by compiling them into Discontinuous
Grammar rules which, although elegant, do not
have a very efficient implementation. The
different approach of top-down ID/LP parsing
using logic grammars is presented by
Abramson.? The approach relies in the use of
metarules.” This approach is attractive in that it
can be simply added on top of logic grammars
that are directly available in Prolog. However,
the main drawback in using top down recursive
descent parsing methods is that it might result in
an infinite loop for left recursive grammars. The
recent version using Static Discontinuity Gram-
mars (SDG)® augmented with Abramson’s
metarules can solve this problem by adding loop
control as a constraint on parsing. According to
the comparison tests reported in Ref. 3), the
approach appears to be considerably faster than
Popowich’s one.

7. Experiments

7.1 Experiment ]

As an investigation of our approach, we have
implemented a small parser, called GHW, using
SICStus prolog on a NEWS3860 workstation.
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GHW is compared with the SDG+ metarules
parser, Shieber’s parser and LangLAB’s parser!'?
running on the same environments. LanglL AB is
a natural language analysis system written in
prolog. We test LangLAB to compare the use of
ID/LP rules and the use of expanded CFG rules
in parsing. In experimentation, we use grammar
X and the set of sentences from Ref. 3) that was
used to compare SDG+metarules approach
with FIGG and Evans and Gazdar’s approach.
The grammar is a small grammar containing 8
ID rules, 4 LP rules and 3 lexicon rules (see
Appendix). For LanglLAB, the grammar is
expanded to the equivalent 19 DCG rules. All
tested sentences of length two to six are generat-
ed in every combination from the grammar. The
timings are averaged over 100 runs using
compiled bytecode and reflect the average
amount of CPU time in milliseconds required to
parse the sentences of several lengths. The result
is shown in Table 2. Because Shieber’s and our
parser develop all parses in parallel and thus the
time used to find the Ist parse and the time used
to find all parses are about the same. only the all
parses time is shown.

Comparing GHW with Shieber's parser,
GHW outperforms the other parser for all
lengths of input. When comparing with SDG
+metarules parser, SDG -+ metarules wins over
our approach in finding the Ist parse for short
sentences, but for longer sentences our approach
surpasses the other in all cases. This is because
our method needs to do more initialization at
the beginning of parsing and thus for short
sentences this cost will affect parse time
significantly. However, in the case of longer
sentences the cost will be small compared to
over-all costs and can be neglected. So our
method should be more suited to use in real
applications with relatively long and compli-
cated sentences. GHW also performs better than

Table 2 The result of the comprison test using grammar X.

Length of sentences n=2 n=3 n=4 n=5 n=6
LangLAB Ist 9. 9. 30. 21. 3s.
total 18. 18. 39. 30. 49.

SDG + metarules Ist 1.1 34 6.7 16.7 101.3
total 25. 49.8 89. 76. 267.

Shieber total 65. 123. 160. 157. 321.
GHW total 3.5 6.6 11.7 12.9 21.0
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Table 3 Results of experiment II.

sentence LangLAB Shieber GHW
length trees first all all all

(msec) (msec) (msec) {msec)
9 2 299 942 3689 79
14 4 559 1037 4680 120
17 8 1414 2804 8449 289
18 4 1629 2366 8629 270
18 27 830 3136 10820 1429
19 3 1860 2884 11279 329
19 12 440 1288 5410 359
25 16 4195 9067 17389 859
28 1600 1539 126129 71820 8380

LangL AB in every case, though LangL AB seems
to outperform the other two ID/LP parsers.
This is because the size of expanded CFG gram-
mar is not much larger than that of grammar X
and thus the advantage of using ID/LP rules is
obscured by parsing overhead in the two parsers.

7.2 Experiment I

To experiment with a more realistic grammar,
we constructed a Thai grammar “Thai,” consist-
ing of 97 ID rules and 38 LP rules, which is
equivalent to 556 CFG rules after translation.
The grammar is an extension of ID/LP rules
written by Vorasucha.'® It covers almost all
patterns of sentences appeared in Ref. 12). We
use the grammar to test the performance of
GHW, Shieber’s parser and SDG+ metarules
parser on sentences with various lengths and
patterns. For Langl. AB, we use CFG grammar
generated from Thai, testing on the same set of
sentences. All tests run on NEWS3860 worksta-
tion. However, we found during the experimen-
tation that the SDG -+ metarules method requires
so much time to analyze the test sentences, so we
stopped testing with it and show here in Table 3
only the results of the other three parsers.

The figure shows that our parser GHW is
better than the other two parsers even for a quite
large grammar like Thai;. LangL AB does quite
well on rather short sentences but tends to get
worse dramatically when sentences are long and
have high ambiguities. Shieber’s parser is
slowest on processing short sentences but eventu-
ally surpasses LangLAB on long sentences.
GHW is the best in finding all parses of every
case and is about 10 times faster than the other
LWO parsers in average.

8. Conclusion

A new method for parsing with ID/LP rules is
described. The method improves the perfor-
mance of parsing by keeping the parsing states
set as small as possible, reducing the time used
by the LP rules checking operation and cutting
away the overhead of duplicated edge checking.
These are accomplished by integrating the merits
of GDN, Hasse diagram and WI aigorithm in
parsing. The method is shown to be superior to
the previous methods on tested grammars.
However, we realize that more explorations have
to be done with diverse grammars and sentences
to confirm our idea. This is left as one of our
further works.
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Appendix

The grammar used in comparison test
S—p np, vp n—[n]
vp—mw ¥V v—[v]
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vp—mw V. np p—I[p]
vp—w V. np, pp np<vp
vwp—mw ¥, § p<vp
yp—ip V. Np.S p<np
np—p n v<s
pp—mw p,np
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