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Abstract

In this paper, a continuous speech recognition system,
“niNja” (Natural language INterface in JApanese), is pre-
sented. Efficient search algorithms are proposed to get
high accuracy and to reduce the required computations.
First, an LR parsing algorithm with context-dependent
phone models is proposed. Second, scores of the same
phone models in different hypotheses at the phone-level
are represented by the single score of the best hypothesis.
The system is tested for the task with 113 word vocabu-
lary, word perplexity 4.1. It produces sentence accuracy
of 97.3% for the 10 open speakers’s 110 sentences and the
error reduction is as much as 77% comparing with the case
using context independent phone models.

1 INTRODUCTION

In this paper, we describe niNja, the continuous speech
recognition system for large vocabulary applications(l, 2].
This system is phone-based and time-synchronous. So, al-
though the system preserves only the hypotheses within a
threshold, many hypotheses are generated during process-
ing. We propose two solutions to improve the performance
of the system.

To get high accuracy, the context-dependent phone
model is incorporated in many systems [3, 4, 5, 6]. How-
ever, for continuous speech applications, what model is
connected at word boundaries and how such model is dealt
with has not been studied enough. Within a word, we can
know the phonetic context in advance by dictionary. How-
ever, especially for large vocabulary applications, at word
boundaries, it is difficult to know the phonetic context in
advance. Therefore, we must consider how to deal with the
models according to where they occur. In this paper, we
propose a new lexical access algorithm with a dictionary
with an LR-table and context-dependent phone models in-
cluding between-word processing.

To get high efficiency, scores of the same phone models
in different hypotheses at the phone-level are represented

by the one score of the best hypothesis and the differences.
In other words, different hypotheses for one phone model
share one best phone model score to save on the compu-
tation.

In this paper, we report the results of the two experi-
ments to show the effect of the two proposed methods. In
the first experiment, we evaluated the context dependent
phone model. In the second experiment, we evaluated how
much computation is reduced by the efficient algorithm.

2 SYSTEM OVERVIEW

The system integrates multi-level (acoustic, phonetic, lex-
ical, and linguistic) knowledge sources.
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The relations between knowledge sources and how hy-
potheses are kept in each level are shown as follows.
Context-dependent phone hidden Markov Models (HMM)
are used to construct phone level hypotheses from vector
quantization (VQ) codes. In this level, the only HMMs
that are predicted by dictionaries are used. To construct
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word level hypotheses from phone level hypotheses with
dictionaries, LR-dictionary, that is the LR-parsing method
modified for lexical access, is used. To construct syntac-
tic level hypotheses from word level hypotheses with con-
text free grammar (CFG), the LR-parsing method is used.
Each level keeps hypotheses as a tree structure. Tree struc-
tures of different levels are linked and a hypothesis in an
upper level has corresponding hypotheses in a lower level.

This system constructs and prunes partial sentence hy-
potheses using all available knowledge time-synchronously.
These partial sentence hypotheses are kept as hypothesis
cells. One hypothesis cell contains a score of the hypoth-
esis and pointers to each level hypothesis. Each pointer
represents the location of the hypothesis in the tree struc-
ture. The same constraint at each level is evaluated only
once, and so the system avoids extra computation.

The architecture of the system is quite similar to HMM-
LR[7]. But, we modify the LR-parsing method for lexical
access.

3 CONTEXT DEPENDENT PHONE HMM

It has been found that context dependent phone modeling
and clustering of context dependent phones produce very
good results in speech recognition.

In this system, we use the context dependent phone mod-
els clustered by tree-based phone modeling[4]. This mod-
eling is able to predict stochastic characteristics of phone
models in unknown phonetic contexts.

To use context dependent phone model for continuous
speech recognition, the problem how to determine the pho-
netic context arises[6]. Within a word, we can know the
phonetic context by using a dictionary in advance. How-
ever, especially for large vocabulary applications, at word
boundaries, it is difficult to know the phonetic context in
advance. We propose the new lexical access algorithm to
consider these characteristics.

3.1 Determination of the phone contexts within
a word

We describe the dictionary entry as CFG with phone sym-
bols as terminals.

noun — h o N
noun — z a q sh i

First, we translate them according to a phone-context
map. A phone-context map contains all triphone and cor-
responding model as follows in part.
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context | phone model
h(i.o) h3
o(h,N) 010
a(z.q) a4
q(a,sh) q0
sh(q.i) shb

So, the dictionary rules are translated as follows.

noun — h(*,0) 010 N(o,*)
noun — z(*,a) a4 qO0 shS i(sh,*)

At a word boundary. for example 'h’ or 'N’ of "h o N”,
only the previous (left-hand) context or following (right-
hand) context is determined. Such phones translate to a
wild-card model. h(*,0) means phone 'h’ which has ’o’
as the following context and any phones as the previous
one. N(o,*) means phone 'N’ which has 'o’ as the previous
context.

Then, the LR-dictionary is made from these rules. (It is
shown in part.)

state | h(*,0) z(*,a) o010 N(o,*)
0 shl sh3
1 sh2
2 reQ

3.2 Handling with the wild-card model

The lexical access method is modified to deal with the
wild-card model. We explain the case of the utterance of
"koko ni hoN ga ...” by way of example.

3.2.1 For reduce action (at the end of the word)

When phone i’ of "ni” is processed, the parser makes re-
duce action with the wild-card model i (n,*). Phone mod-
els which are translated from the wild-card model are de-
termined with a phone-context map in advance: i5, i7,
113, i15 and i17 as follows. (Each model determines
some phones that can follow.) As these models are pre-
dicted, the parser goes on processing.

model | following phone
iS5 a, a-, e, e-, i, i-, o0, 0o-, u, u-
i7 ¢h, £, k, ky, p, py, ry, s, sh, t, ts

i13 |[b, by, d, dy, j, r, w, ¥, 2
i15 N, g, gy, m, my, n, ny
i17 #, h, hy, q, >




3.2.2 At the beginning of the word

When phone 'h’ of "hoN" is processed following "koko ni”,
as before, five hypotheses are constructed. Next, a new
lexical access process starts. If the system uses the LR-
dictionary that is described above, the initial state has
two wild-card models as a lookahead symbol. Here, the
model 115 has phone 'h’ as the succeeding phone, and so
the hypothesis which has 115 can make shift action. The
hypothesis determines the context of the wild-card model
to be h(i,o0). The context h(i,o) is translated to the
model h2. Then the model following the model i15 is
h2. Also the model i17 can makes shift action with the
wild-card model z(*,a) in the same way. The other three
model are not able to get the succeeding phone, and so
they are rejected at this step.

4 EFFICIENT ALGORITHM

The time-synchronous exact algorithm for finding the N-
Best sentence hypotheses requires computation in propor-
tion to a large number of partial hypotheses which are
kept during processing[8]. Many partial hypotheses have
the same phone. For example, both words "koko” and
"asoko" have phone k' and ’o’. In case such a phone has
the same beginning time, the best scoring hypothesis is
computed and the other hypotheses are approximated to
have a path that is the same as the best scoring hypoth-
esis. Therefore, this algorithm requires computation as
same as 1-best algorithm for finding paths. However, the
computation for updating hypotheses is almost linear to
the number of the preserved hypotheses.

4.1 Algorithm

Within a phone we use the time-synchronous viterbi search
algorithm, with only one theory at each state (of HMM).
The initial state of 2 phone model at each frame has a hy-
potheses list, which has all hypothesis cells that are going
to search the phone model. In the hypotheses list, hy-
pothesis cells record the difference in scores from the best
hypothesis except the best scoring hypotheses cell. The
best scoring hypotheses cell records score as it is.

The score of the initial state of a phone model is set by
the best scoring cell in the hypotheses list. At each final
state of the phone (at each frame), the system updates
the hypotheses list keeping at the initial state of the path.
The score of the path is for the best scoring hypotheses
cell. The score of the other cells in the list is calculated
to subtract the recorded difference from the score of the
path.

Some phone model that is next connected to each hy-
pothesis is determined with the LR-dictionary and (if nec-
essary) the LR-table. The cells are set at the initial state of
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the next phone model at the frame. So, all phone model
have been processed. then new hypotheses lists are con-
structed at the initial state of each phone model.

4.2 Comparison

There have been other efficient algorithms proposed for
finding multiple sentence hypotheses. Lattice N-best
algorithm(9] is quite similar to our algorithm, but there
are two differences. The first difference is that this algo-
rithm is at the phone-level, while Lattice N-best algorithm
is at the word-level. In multiple sentence hypotheses, the
number of appearing phones are constant for every task.
However, the number of appearing words varies with the
difficulty of the task. Therefore, our algorithm have a
greater reduction of computation than Lattice N-best al-
gorithm. The second difference is how to preserve partial
sentence hypotheses. In Lattice N-best algorithm, partial
sentence hypotheses are preserved as a lattice. In our al-
gorithm, partial sentence hypotheses are preserved as hy-
pothesis cells. Our algorithm is suitable to use multi-level
constraints as early as possible.

5 EXPERIMENT

The data used here includes 1542 words each by five speak-
ers and 150 sentences each by two speakers. The testset
consists of 11 sentences each from ten speakers. The texts
and the speakers in the testset are not included in the
training data. Therefore the experiments are speaker and
word independent recognition.

The frame shift is 5msec and the sampling frequency is
15kHz. A melcepstrum analysis of order 14 is done. A sin-
gle codebook of melcepstrum, delta-melcepstrum, delta-
power is used. The codebook size is 1024.

Phone HMMs are discrete models and have 4 states, 3
loops, and left-to-right structure. They are trained using
a forward-backward algorithm. We use 43 (context inde-
pendent model), 128, 256, 512, and 1024 models.

Allophone clustering algorithm is decision-tree-based
and acoustic features of neighboring phones are used in
the clustering. The criterion for finding the best split at
each node is to maximize the mutual information.

In the first experiment, we evaluated the context depen-
dent phone HMM. For this experiment, we used a dictio-
nary which had 113 words. The perplexity of the grammar
is 4.1. The recognition results are shown as follows. As
can be seen, the more the number of models increases,
the more the recognition rate is improved. At 1024 mod-
els, context dependent modeling reduces the error rate by
77% as compared with context independent modeling.




Number of models 43 128 256 512 1024
sentence correct (%) | 88.2 90.0 92.7 945 973
bunsetu accuracy (%) | 94.2 96.4 97.6 97.9 99.1

In the second experiment, we evaluated how much com-
putation was reduced by the efficient algorithm. For this
experiment, we used a dictionary which had about 500
words. The grammar was that the word can connect to
any word which is included in the dictionary, so the gram-
mar has almost no limitation. The results are shown as

follows.

total times of
matching phone

total number of
the hypothesis

cells models
high threshold 881,363 239,285
low threshold 1,764,036 249,376

The total number of the hypothesis cells of the low
threshold is twice as many as the high threshold. How-
ever, both total times for matching the phone model are
about the same. Using the proposed method, we can make
the threshold low with almost no extra computation.

6 CONCLUSION

In this paper, we have presented the continuous speech
recognition system, niNja. We showed how we integrate
multi-level knowledge sources and two methods for im-
provement of this system performance.

First, we showed the lexical access algorithm with a dic-
tionary by LR table and context-dependent phone models
including between-word processing to get high accuracy.

Second, we showed that scores of the same phone model
in different hypotheses at the phone-level are represented
by one score of the best hypothesis cell and the differences
to get high efficiency.

In recognition experiments, we demonstrated that
context-dependent modeling reduces the error rate by as
much as 77%.
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