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Abstract
This paper describes an adapatation of
the tf-idf model to Japanese grapheme-
phoneme alignment, without reliance on
training data. The tf-idf model is option-
ally complemented with affixation and con-
jugation handling modules, and determines
frequencies through analysis of “alignment
potential”. The proposed system achieved a
maximum accuracy of 94.74% on evaluation.

1 Introduction
The objective of this paper is to analyse the applica-
bility of statistical methods to automated grapheme-
phoneme alignment in Japanese, without reliance on
pre-annotated training data. All possible grapheme-
phoneme alignment mappings are generated exhaus-
tively before being pruned through application of a
series of constraints. Each individual alignment is
then evaluated through a slightly modified form of the
tf-idf algorithm, optionally augmented with a basic
model of adjective/verb conjugation and affixation.

1.1 Definitions/applications
Grapheme-phoneme (“g-p”) alignment is defined
as the task of maximally segmenting a grapheme
compound into morpho-phonic units, and aligning
each unit to the corresponding substring in the
phoneme compound. For the purposes of this pa-
per, grapheme string refers to the maximal kanji
representation of a given word or compound, and
phoneme string refers to the kana (hiragana and/or
katakana) mora correlate. Strictly speaking, kana
morae are made up of one or more consonant and a
single vowel phoneme, except for the case of stand-
alone vowels ([a], [i], [u], [e] and [o]) and conso-
nants ([n]). However by using kana as our phone-
mic meta-unit, we are able to avoid consideration of
phoneme combinatorial restrictions. Additionally, a
unique broad phonetic transcription is associated with
each kana character, such that the final step to full
phonemic transcription can be achieved trivially. An-
other important thing to realise about kana charac-
ters is that they display a formative duality in that
whereas they are essentially phonemic in nature, they
can make their way into the grapheme string through
phoneme replacement, or alternatively as particles,
conjugating suffices or segments otherwise unrealis-
able by kanji. In this sense, ‘grapheme’ representa-
tion includes both kanji and kana where appropriate,
whereas ‘phoneme’ representation is strictly limited to
kana characters.

By maximal segmentation of the grapheme com-
pound is meant that the grapheme string must be seg-
mented to the degree that each segment corresponds
to a self-contained component of the phonemic de-

scription of that compound, and that no segment can
be further segmented into aligning sub-segments. To
take the example of the grapheme string 6-U-su-
ru [ka-n-sya-su-ru ] “to thank/be thankful”,1 6 aligns
with ka-n in the phoneme string, and U with sya, as
indicated in align1 of Figure 1. The statement of ‘max-
imality’ of segmentation is qualified by the condition
that each segment must constitute a morpho-phonic
unit, in that for conjugating parts-of-speech, namely
verbs and adjectives, the conjugating suffix must be
contained in the same segment as the stem. For our
verbal example of ka-n-sya-su-ru, however, the light
verb status and conjugational independence of the suf-
fix su-ru makes it a self-contained segment.

The main use of g-p alignment lies in its portrayal
of phonological processes, and also implicit description
of the range of readings each grapheme segment can
take. We further suggest that a large-scale database of
maximally aligned g-p tuples has applications within
the more conventional task of g-p translation (Huang
et al., 1994; Divay and Vitale, 1997).

1.2 Cognitive aspects of G-P
alignment

One vital issue in grapheme-phoneme alignment is the
determination of ‘atomic’ grapheme segments, that is
segments which are not further divisible phonetically.
Clearly, the lower bound for atom size is a single char-
acter, but there is no inherent upper bound to the
number of characters that can combine to form an
atom.2 While it is correct to say that there is a cogni-
tive preference to segment off individual kanji charac-
ters (possibly with kana suffices), there is equally po-
tential for (indivisible) multiple-kanji grapheme seg-
ments, such as f-l [se-ri-fu] “one’s lines”. Conse-
quently, alignment does not simply consist of segment-
ing the grapheme string up into individual characters
and aligning them with chunks of the phoneme string,
and consideration must be given to the granularity of
segmentation.

A number of inter-related cognitive factors seem to
determine the “segmentability” of a grapheme string
and resultant “alignability” with a given phoneme
string, namely (i) the relative frequency of each
segment-level g-p sub-alignment, (ii) the cognitive im-
mediacy of alignment of adjacent segments, and (iii)

1So as to make this paper as accessible as possible to readers
not familiar with Japanese, kana characters are written ital-
icised in Latin script throughout this paper, with character
boundaries indicated by “-” and segment boundaries (which
double as character boundaries) indicated by “�”.

2In the context of a grapheme string, the upper bound on
segment length becomes the character length of that string.
Given that the maximum grapheme character length observed
for the Shinmeikai dictionary was 9, this was the actual upper
limit on segment length in evaluation.
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Figure 1: Candidate alignments for 6-U-su-ru [ka-n-sya-su-ru] “to thank/be thankful”

phonetic similarity to regular readings in the case of
novel g-p sub-alignment.

Relative frequency of alignment refers to the situa-
tion of a given grapheme segment g commonly align-
ing with a given phoneme segment p (and phonolog-
ical variants thereof), such as 6 invariably aligning
with the reading ka-n. Clearly if the 〈...�g�...〉–
〈...�p�...〉 alignment sub-schema is observed with
sufficient frequency, a natural preference will arise to
emulate that same alignment sub-schema wherever
possible, for reasons of cognitive familiarity.

In the case that there is no alignment schema
which produces familiar alignments for all individual
grapheme segments, there appears to be a tendency
to preserve as much regularity to the overall align-
ment schema as possible by maximising the number
of regular alignments and framing any irregular align-
ments between segment-level alignments of high cog-
nitive immediacy. Thus, when presented with a g-
p tuple such as 〈r-1〉–〈si-ra-ga〉, where r is com-
monly associated with the reading si-ra but not si and
there are no independent instances of1 taking a ga or
ra-ga reading, there is a natural preference to upkeep
the single known sub-alignment for r and produce a
forced alignment for 1, as in 〈r �1〉–〈si-ra�ga〉.

Finally, if a novel alignment must be made such as
〈...� 1〉–〈...�ga〉 above, conservatism rules in that
irregular readings tend to be chosen so as to be pho-
netically similar to established readings. In the case
of 1, the established reading is ka-mi (or ga-mi in its
voiced realisation), from which the deletion of a single
character produces the suggested ga reading.

In the case that the above processes do not apply
to any substring of the g-p tuple, the tendency is to
chunk unalignable kanji together into a single multi-
kanji segment, such as occurred for se-ri-fu above, or
as is seen for 9-+ [ha-se] in the surname 〈9-+�

n〉–〈ha-se�ga-wa〉.
The implications of the above observations to our

statistical modelling of g-p alignment are to develop
a model which gives preference to sub-alignments of
high plausibility, allows irregular alignments given
that the surrounding context displays high cognitive
immediacy of alignment, and has the facility to “back-
off” to multi-kanji segments when necessary. All of
these traits are inherent in our adaptation of the tf-
idf model.

The remainder of this paper is structured as fol-
lows. Section 2 describes the process of exhaustively
generating all alignments between the grapheme and
phoneme strings, and pruning off illegal alignments
through a series of constraints. Section 3 then intro-
duces the alignment scoring methodology, based on an
adaptation of the tf-idf algorithm optionally com-
plemented with methods to handle conjugation and
affixation. Finally, the proposed system is evaluated
in Section 4.

2 Grapheme-phoneme
alignment

Grapheme-phoneme alignment is performed as a
three-stage process: (a) detection of lexical alterna-
tion and removal of lexical alternates from the input,
(b) determination of all possible alternation schemas
and subsequent pruning through phonological con-
straints, and (c) scoring of all final candidate align-
ments to determine the final solution. We discuss the
first two of these issues in this section, and devote
Section 3 to discussion of the scoring mechanism.

2.1 Pre-processing
Lexical alternation is defined as the condition of there
being multiple lexical spell-outs for a given phonetic
content, all sharing the same basic semantics and kanji
component. For Japanese, this can arise as a result
of the replaceability of kanji with their corresponding
kana (i.e. “maze-gaki”), or alternatively for okurigana,
that is variation in kana suffices by way of phonetic
content being conflated with or prised apart from the
stem kanji phonetic content. An example of this latter
process can be seen for the verb ka-wa-ru “to change”,
lexicalisable either as Q-ru or Q-wa-ru, with the un-
derlined wa kana character conflating with the kanji
stem of Q in the former (basic) case for the same
phonetic content.

Detection of okurigana alternates is achieved
through analysing the graphemic form of g-p tuples
sharing the same phonetic content, and aligning the
graphemic component of each such corresponding tu-
ple to determine kanji correspondence. All instances
of okurigana-based lexical alternation are clustered
together, and alternates of the ‘basic’ form removed
from input. The basic form is defined as that with
maximal phonemic conflation, that is minimal kana
content. Note that this form of lexical alternation can
extend over multiple kana units, and co-occur inde-
pendently for individual kanji units.

The main purpose in clustering okurigana alter-
nates is to enforce consistency of analysis over the al-
ternation paradigm. This is achieved by applying the
alternates in constraining the scope of alignment for
the given alternation paradigm, by way of taking the
intersection of the alignment paradigms for individ-
ual lexical alternates. The final alignment analysis for
the base form is then applied to all alternates in form-
ing our final combined output. That is, by removing
all but the base form from final statistical analysis,
we are guaranteed a unique alignment type, and at
the same time can avoid having multiple realisations
of the same basic item skew the performance of the
statistical model.

2.2 Alignment of basic
grapheme-phoneme tuples

The g-p alignment process can be subdivided into the
three sub-tasks of (i) segmenting the grapheme string



into morpho-phonic units, (ii) aligning each grapheme
segmentation to compatible segmentation(s) of the
phoneme string, and (iii) pruning off illegal alignments
through the application of a series of linguistic con-
straints.

Given that both grapheme and phoneme segments
can be of arbitrary length, we must generate align-
ments for all cardinalities of segmentation. That is,
for the example of a three-character grapheme string,
we must consider the maximal segmentation of the
string into three segments, and also partial segmenta-
tions into two segments or alternatively a single seg-
ment encompassing the full string.

The first stage of the alignment process is thus to
generate all possible segmentations of the grapheme
string, by optionally placing a delimiter between ad-
jacent characters (and implicitly placing delimiters at
the beginning and end of both the grapheme and
phoneme strings for all segmentation candidates).
Note that individual kana and kanji characters are
atomic, according to lexical constraint l :

〈l〉 Segment boundaries can only exist at character
boundaries. (Characters are indivisible)

Thus, 2m−1 segmentation candidates are generated for
a grapheme string comprising m characters (both kana
and kanji).

Next, the following axioms of alignment are applied
in determining possible alignments for each segmen-
tation paradigm.

〈a1〉 The alignment must comprise a 1-to-1 function
and, except in cases of “grapheme gapping”, an
isomorphism. (no overlap in alignment and [con-
ditionally] full g-p coverage)

〈a2〉 No crossing over of alignment is permitted. (strict
linearity of alignment)

The conditionally isomorphic nature of grapheme-
phoneme alignment gives rise to the property that de-
limiters in the phonemic string generally constitute
phoneme segment boundaries, that is lead from one
phoneme segment directly into the next. The crossing-
over constraint further gives us the property that seg-
ments must be ordered identically in the grapheme
and phoneme strings. Leaving “grapheme gapping”
aside for the time being, the alignment process can
thus be simplified by producing all segmentation can-
didates for the phoneme string, in an identical fashion
as for the grapheme string, and returning the set prod-
uct of all grapheme and phoneme segmentation can-
didates of equal cardinality. As for grapheme segmen-
tation, phoneme segmentation produces 2n−1 candi-
dates for a phoneme string n characters in length. Ad-
ditionally, as the number of grapheme and phoneme
segments must coincide for an isomorphic alignment,
in actuality, we need generate segmentations up to
a factor of only l − 1, where l = min(m, n), giving

the total number of alignments as
∑l−1

x=0 Cm−1
x Cn−1

x .
Accordingly,6-U-su-ru [ka-n-sya-su-ru ] is associated
with 35 alignments, as suggested in Figure 1.

The exception to the isomorphism constraint is
grapheme gapping, in which phoneme content is
“gapped” from the grapheme string, such as can op-
tionally occur for the no in 3-(no-) j [ya-ma-no-
te] “uptown”. Grapheme gapping only ever occurs
for the phoneme segments no and ga and the head
of geminates (“/Q/”), and a non-grapheme gapping
alternate typically exists, as occurred for ya-ma-no-
te. Note that alternation does not immediately point
to grapheme gapping, as the no could potentially be

conflating with 3 under alternation. As a result, we
must fall back on the statistical model to weigh up
the respective possibilities of conflation and grapheme
gapping. At the same time, however, we want to be
careful to play down the effects of grapheme gapping,
due to its relative infrequence (0.1% in the solution
set used in evaluation) and non-productive nature.
Within the proposed formulation, this is achieved by
considering grapheme gapping only in the case of ap-
propriate lexical alternation.

The final step in alignment is to disallow any
alignments which contravene the following linguis-
tic constraints, applicable to grapheme segmenta-
tion (“g”), phoneme segmentation (“p”), and/or
grapheme-phoneme alignment (“g-p”), respectively:

〈p1〉 A demarkation in script form indicates a segment
boundary, except for the case of kanji-hiragana
boundaries. [g]

〈p2〉 Graphemic kana must align with direct kana
equivalents in the phoneme string. [g-p]

〈p3〉 Intra-syllabic segments cannot exist for kana
strings [g,p]

〈p4〉 The length of a kanji substring must be equal to
or less than the syllable length of the correspond-
ing phoneme substring. [g-p]

〈p5〉 Wherever possible, individual phoneme segments
should contain a maximum of one voiced obstru-
ent. [p]

Constraint p1 produces the result that a segment
boundary must exist at every changeover between
hiragana and katakana, or kanji and katakana, and
from hiragana to kanji. The exceptional treatment
of kanji-hiragana changeovers is designed to facilitate
the recognition of full verb and adjective morpho-
phonic units, as these two parts-of-speech involve con-
jugating kana suffices and the potential for furigana-
based lexical alternation. Indeed, if this allowance
were not made, it would not be possible to apply a
consistent analysis in the case of lexical alternation,
as alternates involving hiragana suffices to the kanji
stem would necessarily have the hiragana suffix seg-
mented off from the preceding kanji (e.g. 〈 Q �wa-
ru〉–〈ka�wa-ru〉, returning to our ka-wa-ru example,
with the kanji stem corresponding to the ka phoneme),
as would not be reproducible for the base form (i.e.
〈 Q �ru〉–〈ka-wa�ru〉). Note that p1 is equally ap-
plicable to the grapheme and phoneme strings, and
also applies to boundaries between Latin/Greek and
Japanese scripts, as occurred for a handful of entries
in evaluation.

Constraint p2 polices the phonemic nature of kana,
in disallowing alignment of kana segments of non-
corresponding phonetic content. This has the dou-
ble effect of pruning off peripheral alignments such as
alignj and, in combination with p1, partitioning up
grapheme strings which contain a ‘pivotal’ kana char-
acter sandwiched between kanji characters.

Constraint p3, applicable to both grapheme and
phoneme segmentation, introduces the notion that
alignment operates on the syllable- rather than char-
acter -level.3 While single kana characters generally
function as individual syllables, stand-alone vowel and

3Syllable detection is based solely on consonant clustering
(gemination and instances of [n]) and ignores stand-alone vowel
kana as they produce syllable ambiguity, which we have no im-
mediate way of resolving.
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tf -idf (〈g, p, ctxt〉) =
freq(〈g, p〉) − 1 + α

freq(〈g〉)
︸ ︷︷ ︸

tf (〈g,p〉)

log

(
freq(〈g, p〉)

freq(〈g, p, ctxt)− 1 + α

)

︸ ︷︷ ︸

idf (〈g,p,ctxt〉)

(2)

consonant kana (see above) can form syllable clusters
with immediately preceding kana, as occurs for the
ka-n combination in ka-n-sya-su-ru. Here, we would
disallow a segment boundary to exist between ka and
n, and as such prune off aligni in Figure 1.

Constraint p4 requires that each individual kanji
character leads to a phoneme substring at least one
syllable in length, irrespective of whether that sin-
gle kanji comprises the head of a morpho-phonic unit
or combines with adjoining kanji to form a multiple-
grapheme segment. A two kanji segment is required,
therefore, to align with a phoneme substring at least
two syllables in length. p4 provides surprising prun-
ing potential for longer grapheme strings and is able
to alleviate alignj in Figure 1.

Finally, p5 (a corollary of “Lyman’s Law” (Vance,
1987, pp 136-9)) rejects multiple instances of voiced
obstruents within a single phoneme segment, except
where such exclusion would disallow all alignments.
The defeasibility of this constraint is required because
of the rare occurrence of alignments containing mul-
tiple voiced obstruents within a single phoneme seg-
ment, such as 〈 n-si-i〉–〈o-bi-ta-da-si-i〉 (voiced ob-
struents underlined). Despite p5 occasionally pro-
ducing over-constraint, it possesses significant disam-
biguating power in cases where a residue of legal align-
ment candidates is produced.

It is important to realise that the application of the
above constraints not only reduces the search space for
statistical scoring, but can actually single out a unique
legal solution, providing what turns out to be vital
“free ride” alignment data to bootstrap the statistical
model with.

3 Alignment scoring
The scoring method utilised in this research is an
adaptation of the tf-idf model (Salton and Buck-
ley, 1990), originally developed within the informa-
tion retrieval (“IR”) field for term weighting. The
main point of departure in our usage of the tf-idf
model over the standard usage, is in the counting of
frequencies.

The need for a special means of counting frequen-
cies comes about because of the prevalence of g-
p alignment paradigms displaying alignment ambi-
guity (i.e. full disambiguation is not achievable sim-
ply from the constraints of Section 2.2). When the
system comes to count the frequency of a segment
within a given context, it is unable to select that align-
ment candidate which is ‘correct’ from the contain-
ing alignment paradigm. Rather than attempting to
pre-disambiguate the alignment paradigm to produce
statistical absoluteness, the system takes each g-p tu-
ple in turn and searches for the segment in question
within its alignment paradigm; in the case that the
target segment is indeed found to exist within one or
more alignment candidates for the current g-p tuple,
the system counts one. That is, frequency is based on
existence in the overall alignment paradigm and not
actual occurrence in the final output. In this way, we

are able to process all g-p tuples in parallel and avoid
having to commit ourselves to the plausibility of the
system output for one g-p tuple over that for another.

3.1 Why TF-IDF?
Within the terms of the original IR-based application
of the tf-idf model, each grapheme segment type can
be considered as a document, the associated phonemic
segments across all g-p tuples as terms, and the left
and right graphemic/phonemic contexts of the current
grapheme/phoneme strings, as the document context.

The tf-idf model maximally weights terms which
occur frequently within a given document (tf) but
relatively infrequently within other documents (idf).
As described in Section 1.2, we wish to maximally
weight readings (aligned phoneme strings) which co-
occur frequently with a given grapheme string, but at
the same time score down readings which occur pri-
marily in a fixed lexical context, as this would tend to
point to oversegmentation at the phoneme level (the
phoneme context is in actual fact part of the read-
ing for the current grapheme segment) and/or the
grapheme level (the grapheme context clusters with
the current grapheme segment to form a multiple-
grapheme segment).

The optimisation of segment-level alignment is
achieved by simultaneously considering the left and
right contexts for both the grapheme and phoneme
strings independently, and taking the average of the
four resultant scores; this supports both the detection
of regular alignments and a variable window size over
the grapheme and phoneme strings. Additionally, by
way of averaging the combined scores for each aligned
segment to produce a single score for the overall align-
ment candidate, we are able to weight up alignments
with more regularised segment-level readings, again
mirroring the cognitive processing of g-p alignment.

While the tf-idf offers no immediate solution to
the third cognitive issue of conservatism in cases of
non-regular readings, it does allow us to handle ab-
breviations of regular readings, as was seen for the ga
reading of 1, in that they will generally be contained
within the alignment paradigm of g-p tuples involving
the grapheme segment in question.

3.2 Counting frequencies
The counting of term frequencies based on existence
within an alignment candidate, can be formalised as in
equation equation (1), in the case of freq(〈g, p〉). Here,
p is the phoneme string aligning with grapheme string
g and phon var(p) describes the set of “phonological
alternates” of p.

Phonological alternates are predictable in-
stances of phonological alternation from a base form p,
with the most widespread types of phonological alter-
nation being “sequential voicing” (Tsujimura, 1996,
54-63) and gemination. We require some method
to cluster frequencies for phonological alternates to-
gether so as to diminish the effects of data sparseness.
Here, we are aided by the observation that phonolog-
ical alternation affects only the phoneme string and



wtf (〈g, p, ctxt〉) =
freq(〈g, p〉) − 1 + α

freq(〈g〉)
log

(
freq(〈g, p〉)

freq(〈g, p〉) − freq(〈g, p, ctxt〉) + α

)

(3)

occurs only at the interface between adjacent seg-
ments, at the syllable level. By providing the system
with a set of syllable-level phonological equivalence
classes, it thus becomes possible to diagnose whether
two phoneme segments are phonological alternates of
one another and identify the more basic form.

In terms of the statistical formulation, this linguistic
knowledge is applied as follows. For a given phoneme
string p = s1s2...sn, where each si is a syllable unit, we
generate a regular expression of all plausible phono-
logical alternations {sa|sb|...}s2...{sα|sβ |...}, where
{sa|sb|...} and {sα|sβ |...} are the phonological equiva-
lence classes for s1 and sn respectively. For example,
given the phoneme string ka-ku, we would generate
the string-level equivalence class {ka|ga}{ku|gu|φ},4

where the ka/ga and ku/gu unit grapheme alterna-
tions are attributable to sequential voicing, and the
ku/φ alternation to gemination.

The frequencies of all phonological alternations sub-
sumed by the string-level equivalence class are then
combined within freq(〈g, p〉). We are able to han-
dle phonological alternation within the bounds of the
original statistical formulation by virtue of the fact
that the grapheme string is unchanged under phono-
logical alternation, and as such the combined frequen-
cies of alternates can never exceed the frequency of the
associated grapheme string segment. This guarantees
a tf value in the range [0, 1].

3.3 The basic TF-IDF model
Our interpretation of the tf-idf model is given in
equation equation (2), where g is a grapheme unit, p
a phoneme unit and ctxt some lexical context for 〈g, p〉
within the current alignment; freq(〈g〉), freq(〈g, p〉)
and freq(〈g, p, ctxt〉) are the frequencies of occurrence
of g, the tuple 〈g, p〉, and the tuple 〈g, p〉 in lexical con-
text ctxt , respectively. The subtractions by a factor of
one are designed to remove from calculation the sin-
gle occurrences of 〈g, p〉 and 〈g, p, ctxt〉 in the current
alignment, and α is an additive smoothing constant,
where 0 < α < 1.

As described above, consideration of lexical con-
text for a given tuple 〈g, p〉 is four-fold, made up of
the single character immediately adjacent to g in the
grapheme string and single syllable immediately ad-
jacent to p in the phoneme string, for both the left
and right directions. In the case that 〈g, p〉 is a prefix
of the overall g-p string pair, we disregard left lexical
context outright and simply score according to the two
right contexts. Correspondingly in the case of 〈g, p〉
being a suffix, we disregard right context. The re-
sultant scores are then combined by taking the arith-
metic mean. In the case of full-string unit alignment,
the overall score is defined to be tf (〈g, p〉).

The overall score for the current alignment is deter-
mined by way of the arithmetic mean of the averaged
scores for each segment pairing, with the exception of
full kana-based grapheme segments which are removed
from computation altogether.

3.4 Complementing the basic model
There are two commonly occurring segment types
which do not fit in with the inherent ‘high frequency,
high disparity of context’ philosophy of the basic tf-

4Here, φ designates the head of a long consonant, also indi-
cated by /Q/ in phonological theory.

idf model, namely affixation and verbal/adjectival
conjugation.

Affixation refers to the condition of a grapheme
segment with fixed reading commonly occurring as a
prefix or suffix. In its basic form, the tf-idf model as
set out above weights down segments which occur in
a fixed lexical context with high frequency, such that
prevalent affixes could go undetected. To avoid this
situation, we propose that the basic model be com-
plemented with the “weighted term frequency” (wtf )
metric as detailed in equation equation (3). This is
applied for string-initial and string-final segments in
parallel to the original tf -idf metric, and the max-
imum of the two resultant scores taken as the final
score for the segment in question.

Verbal/adjectival conjugation is difficult to
cope with given the existing statistical formulation,
because it occurs concurrently at both the grapheme
and phoneme levels (i.e. we have no immediate ceiling
on combined frequencies as was the case for phonolog-
ical alternation). As such, the existing model is not
able to cluster frequencies for distinct conjugates to-
gether. We overcome the effects of conjugation-based
alternation by pre-processing the input data to postu-
late verb paradigms,5 based on conjugational analysis
of the kana suffix to a given stem (Baldwin, 1998).
This process is performed independently of any verb
dictionary, and is based simply on a search for seg-
ments comprising a stem and inflectional suffix; such
segments are classified according to the invariant stem
content and each conjugational class which could have
produced the given inflection. Segments sharing a
common stem and conjugational class are then clus-
tered together to form our dynamic verb paradigms,
and further expanded through analysis of phonologi-
cal alternation as described above.

Scoring of verb conjugates is facilitated by counting
the number of occurrences of the given verb stem in
the full set of alignment paradigms (as either a fully
or partially aligned segment), to take as our freq(〈g〉).
freq(〈g, p〉) is then set to the combined frequency of
occurrence of all conjugates belonging to the current
verb paradigm. Given that conjugational analysis in-
herently delimits both the grapheme and phoneme
segments, we have no further use for lexical context,
and hence freq(〈g, p, ctxt〉) is set to freq(〈g, p〉), and
the respective values plugged into equation equation
(3).

An additional extension to the basic model based
on incremental learning is proposed in (Baldwin and
Tanaka, 1999).

4 Evaluation
The proposed system was tested on a set of 59744 g-
p tuples containing at least one kanji, derived from the
combined edict Japanese-English6 and Shinmeikai
(Nagasawa, 1981) dictionaries. The makeup of this
input set is given below:

No. of entries (+ lex. alternations): 59744
No. of entries (− lex. alternations): 51484
Ave. grapheme string char. length: 2.35

5Although discussion hereon refers exclusively to verbs,
(conjugating) adjectives are handled in exactly the same man-
ner.

6ftp://ftp.cc.monash.edu.au/pub/nihongo



Ave. kanji in grapheme string: 1.93
Ave. phoneme string char. length: 3.98
Ave. phoneme string syllable length: 3.46

Due to restrictions on manpower, it was unfeasible
to fully annotate all g-p tuples, and a limited set of
5000 tuples was instead randomly selected for manual
annotation. Given the direct and indirect statistical
interaction between these 5000 tuples and the remain-
der of the dictionary, however, the behaviour of the
system in this restricted evaluation is suggested to be
indicative of overall performance. By way of note, the
average number of (grapheme) segments for the ran-
dom set of 5000 g-p tuples was 1.95.

First, looking to the relative applicability of the
proposed constraints, we evaluated the effectivity of
alignment pruning. The average number of exhaus-
tively generated alignment candidates, prior to the
application of the constraints, was 15.57, and the av-
erage residue of alignment candidates after constraint
application was 4.07, a reduction of nearly 75%. For
the 5000 member evaluation set, there were no cases
of over-constraint, such that the solution was always
contained in the final alignment paradigm for each
g-p tuple. It is also worthwhile noting that full dis-
ambiguation was produced for 895 g-p tuples in the
evaluation set.

Turning now to alignment accuracy, we tested the
proposed methodology with differing values of α, and
affix and conjugation handling variously activated and
deactivated. This produced the results given in Figure
2, with each curve representing a different value of α
and the various affix (±A) and conjugation (±C) han-
dling activation states indicated on the x-axis. Bilac
et al. (1999) provide a baseline for evaluation, by way
of a rule-based formulation which achieved a 92.90%
accuracy on the same dictionary file.

90

91

92

93

94

95

96

97

-A-C +A-C -A+C +A+C

A
cc

u
ra

cy
 (

%
)

Affix/conjugation handling activation state

Baseline
α = 0.001

α = 0.05
α = 0.25
α = 0.50
α = 0.75

Figure 2: Alignment accuracy

From Figure 2, it would appear that the optimal
system performance is achieved with α set to a value
between 0.25 and 0.5, with the best single accuracy of
94.74% achieved with α set to 0.25, affix handling off
and conjugation handling on; this represents a signif-
icant improvement over the baseline figure of 92.90%.
Interestingly, affix handling seems to marginally di-
minish system performance, but conjugation handling
improves it perceptibly, irrespective of the value of
α. Conjugation handling appears to reduce “over-
alignment” (proper subsumption of the correct align-
ment by the system alignment) of conjugating atoms,
while not generating significant levels of underalign-
ment (proper subsumption of the system alignment
by the correct alignment). Affix handling acts simi-
larly in not affecting underalignment, but at the same

time generates additional overalignment errors. Inter-
estingly, the adverse effects of affix handling are gen-
erally restricted to non-conjugating atoms, such that
when conjugation and affix handling are combined,
the advantages of conjugation handling are retained,
although unwanted noise is still produced by the af-
fix handling. This suggests that higher performance
could be expected given a more successful affix han-
dling method.

Increasing the value of α produces progressively
lower levels of overalignment and local decreases in un-
deralignment, bottoming out around 0.25, from which
point onward, any decreases in overalignment were
outweighed by increases in underalignment. These re-
sults contrast sharply with those presented in (Bald-
win and Tanaka, 1999) for the same basic model, tak-
ing an augmented version of the 5000 member evalua-
tion set as input. In (Baldwin and Tanaka, 1999), the
system accuracy increased monotonically as α tended
toward 0, suggesting that smaller values of α may be
less susceptible to the effects of data sparseness.

5 Conclusion
In this paper, we proposed an adaption of the tf-
idf model to Japanese grapheme-phoneme alignment,
and further went on to develop modules for handling
the effects of affixation and conjugation. Our imple-
mentation of the tf-idf model is characterised by
it not requiring training, and instead sourcing non-
disambiguated alignment paradigms to determine the
alignment potential of a given segment or tuple. Eval-
uation indicated that our proposed method was able
to outperform a rule-based system on a common test
set and that conjugation handling significantly en-
hanced the system accuracy, although affixation han-
dling proved detrimental to performance and remains
an issue for further research.
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