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Abstract. We are developing a system in which a user can control vir-
tual agents through natural language dialogue. We particularly focus
on the semantic analysis of spatial expressions in natural language in-
structions. Spatial expressions are relative to the speaker’s viewpoint
and the indicated positions can change dynamically. In this paper we
propose a semantic representation using lambda structures. Some fea-
tures of lambda structure enable us to keep the speaker’s viewpoints in
such semantic representations undetermined, to keep track of changing
positions, and to encapsulate representations like English prepositions.
With this representation, we can handle this kind of spatial expressions
efficiently. We also state the method of translating natural language in-
structions to this representation.

1 Introduction

Graphical user interface is recently a popular way of controlling computers. Al-
though direct manipulation such as mouse control and motion capture corre-
sponds to intuitive human analogy, such interfaces are not always appropriate.
For example, consider the situation where a user works with a CG animation
tool which has a graphical user interface only. If the user want a CG character
to run along a road, the user will have to trace a path along which the charac-
ter is to move using a mouse. Moreover, if the user wants the character to run
along the road with his hand waving, the user will need some way of modifing
its bodily movement. Presumably the user will have to use many buttons or
control bars to adjust movement in this way, because many GUI systems in-
evitably facilitate such control through switches and buttons, to deal with the
vast amount of information associated with the task. It can be hard to learn to
use such interfaces, and the GUI is probably misleading. Many such disadvan-
tages of GUIs are enumerated by Gentner et al. [4]. On the other hand, if the
tool can understand natural language instructions, the user can accomplish his
goal simply by saying “Run along the road”. For the latter more complicated
goal, the user could simply say “Run along the road with your hand waving”.

Interacting with the computer through natural language has several advan-
tages. First, it is quite natural and easy for a user to give instructions. Second,
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language instructions can express complicated commands such as repetition and
simultaneous action. Third, we can adequately and succinctly convey requests
using contextual information. For example, we can just say “Further right” after
commanding the character to “Move right”.

However, there are many research issues to realize such a system. In order to
satisfy the user’s requests, the system is required to decode the users’ intentions
from natural language. Since Winograd’s SHRDLU [9], very few researchers have
studied aspects of language connected directly to actions in a physical, dynamic
world. And natural language understanding systems can still fail to capture
users’ intentions at various levels.

Fig. 1. The screenshot of the system

We have developed a prototype version of the system in which virtual agents
reside in the virtual space (see Fig. 1). A user can give the agents instructions
in Japanese and see gradual changes in the virtual space through a graphic
window. This system provides a testbed for investigating the relation between
natural language as an interface to computers, and actual actions performed
by the computer. For the present, the user can control only a camera agent
which project the virtual space into graphic windows. In this sort of system,
instructions contain many spatial expressions with which a user commands the
camera agent to move or turn. In this paper we define a spatial expression to
be a natural language phrase which specifies a position, area or direction in
the virtual space. In English, many prepositional phrases modifying places or
regions are regarded as spatial expressions. We require that a variety of spatial
expressions are handled. In this paper we propose a semantic representation for
spatial expression. The representation enables us to handle spatial expressions
efficiently.
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2 Brief Introduction to Japanese Grammar

Before describing the system, let us give a brief outline of Japanese grammar.
Ordinary Japanese sentences are a sequence of so-called bunsetsu phrases, that
is a chunk of content words (nouns, pronouns, adjectives, etc.) followed by a
postposition which marks the case of the preceding elements. Usually the verb
resides in the last bunsetu phrase of the sentence. For example, the sentence “He
went forward.” can be written in Japanese as follows:

Example 1. “Kare (pronoun-he) wa (postposition-agent) / mae (noun-front) ni
(postposition-to) / itta (verb-went).”

Here each “/” denotes a delimiter between bunsetsu phrases. A bunsetu
phrase containing “no” modifies the proceeding phrase. For example, “Kare
(pronoun-he) no (postposition-possession) / tsukue (noun-desk)” means “his
desk”. However, the meaning of the postposition “no” varies depending on what
it modifies. In particular many spatial expressions use the postposition “no”. For
example, let us consider the phrase “tsukue (noun-desk) no (postposition-of) /
mae (noun-front)”. In this phrase, the word “mae” is modified by the previous
noun “tsukue no”. In this case, “no” indicates the origin of the directional ex-
pression “mae”. So this phrase means “the front of the desk”. In a later section,
we will see a fragment of Japanese grammar which can express some spatial
relations with the postposition “no”.

3 System Overview

In the current prototype system, a user can give natural language instructions
to the agents in the virtual space through voice input. When the system receives
an input, it is analyzed and the action is performed. While only the camera
agent can be controlled by the user at present, there are other agents in the
virtual space. The other agents stay at a pre-determined location. The user can
command the camera agent to move or turn in a particular way. The camera
agent moves or pans according to the commands and the user can see gradual
view change as in the graphic view. The following are examples the current
system can deal with:

– “Isu (noun-chair) no (postposition-of) /
mae (noun-front) ni (postposition-to) /
ike (verb-go).” (Move to the front of the chair)

– “Tsukue (noun-desk) no (postposition-of) /
hou (noun-direction) wo (postposition-to) /
muke (verb-turn).” (Turn toward the desk)

– “Mousukoshi (adverb-somewhat) /
sore (pronoun-it) ni (postposition-to) /
chikazuke (verb-approach).” (Approach it a little)
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Fig. 2. The components of the current system

The system consists of following modules (see Fig. 2):

1. Speech recognition module
2. Syntactic analysis module
3. Semantic analysis module
4. Animation generation module

The user’s natural language instructions are processed through these mod-
ules. At first the speech recognition module converts the voice input into a word
sequence. The syntactic analysis module parses it to generate a syntactic tree.
For the sake of modularity, in this phase we use a general-purpose parser [1]
which analyzes sentences using a given grammar. The tree is traversed by the
semantic analysis module to generate a semantic representation, which is lan-
guage independent structure containing more detailed information. For anima-
tion generation, the system has to specify precisely several parameters such as
the coordinates of objects. Information not explicitly specified in the instruction,
such as motion speed, distance of movement, are filled in by default values dur-
ing this process. Then, the animation generation module is passed the semantic
representation and animates the virtual space accordingly.

In this paper we particularly focus on the semantic analysis module. In order
to control the virtual agents, the system is required to interpret spatial expres-
sions such as “rightward” and “near” and determine the specific coordinate or
directional vector which is implied by the instructions. But there are several
problems in this process.
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4 Problems with Spatial Expressions

Relativeness to the speaker: User-designated spatial expressions are usually
relative to the user’s viewpoint. For example, consider the case that two persons
standing at different positions are saying “Look to the right of the chair” (see
Fig. 3). The actual meaning of the sentence varies depending on each speaker’s
position. In this case, the desired result would be different for persons standing
at position A and B. In our system, the user gives instructions while viewing the
virtual space through the camera agent, so his position will change as he com-
mands the camera agent to change the view. Therefore we should take account
of the position from which the the instruction was issued in computing the goal
position.

the right of the chair

the right of the chair

chair

A

B

Fig. 3. The relativeness of spatial expressions

Nested expression: One solution to the problem of relativeness is to intro-
duce a viewpoint argument into a function which compute a goal position. For
example, consider the function fRightOf (ps, pt, d1) which takes the speaker’s co-
ordinates ps, the target coordinates pt and the distance to the right of the target
coordinates d1. This function returns the coordinates of a certain point to the
right of position pt at distance d1, as viewed from position ps. With this approach,
we obtain the coordinates expressed by “the right of A” by fRightOf (ps, PA, d1)
where PA is the coordinates of the target A. Adopting this approach, we need
to use our function to obtain the coordinates while traversing the syntactic tree.
However, we sometime encapsulate spatial phrases using prepositions, to make
new constructs such as “near the right of A”. Therefore we may have to syn-
thesize such functions into something like fNear(ps, fRightOf (ps, pt, d1), d2). This
approach has the disadvantage that once the value of the function is computed,
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the nesting information is completely lost. If we want to reuse part of this infor-
mation at a later stage to adjust the distance d1 or d2, there is no way to do it.
Relations between functions should thus be preserved for later reference.

Kalita et al. [6] have proposed routines to solve spatial relations. Although
their approach can be applied to many prepositions, they haven’t proposed how
to translate nested expressions into the proposed form. In addition, since their
method is comparatively expensive computationally, it is not useful for our sys-
tem which requires real-time response.

Moving targets: When two or more objects in the virtual space are moving
simultaneously, the spatial relations between them also change. In this case, it
is not a good idea to keep track of objects’ coordinates at a particular time.

Vagueness: When we say “go to the front of A”, the distance between A
and the goal position is vague [5]. Without this information the system cannot
determine the actual goal coordinates. A default value is initially fed into the
system to account for such vague quantities. However, there may be cases where
the amount is affected by the relation between the speaker and A.

Spatial expressions are frequently used in controlling agents with natural
language. In the following section, we propose a semantic representation which
solves the above problems and realizes versatile handling of spatial expressions.

5 Semantic Representation Using Lambda Structure

We use abstract lambda structures for the efficient handling of spatial expres-
sions. Our basic idea in handling spatial expressions is that all semantic repre-
sentations of spatial expressions should be represented with lambda structures.
A lambda structure can be regarded as an entity representing a mathematical
function which acts as a black box to receive input values and output a value
based thereupon. Unlike ordinary functions, a lambda structure can be treated
as an object. We therefore can substitute, store and retrieve lambda structures
in the same manner as other objects such as numbers. In addition, a lambda
structure can take another lambda structure as input. This enables us to syn-
thesize lambda structures to compose a new structure which also works as a
function.

“Application” is an important operation on lambda structures. Only when
all arguments are applied to a lambda structure, does it act as a function, and
it acts as an object otherwise. An application can alternatively be considered as
sending a message to an object, producing a value. For example,

λx.add(x, add(x, 2)) (1)

usually acts as an object. Here add is an arithmetic function to calculate the
sum of two arguments. λx. denotes lambda abstraction, which can be regarded
as the interface for the input. When a value is fed into this, all appearances of the
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variable x are replaced with the input value. That is called “beta-translation”.
So, if the number 3 is fed into the structure, it returns the value 8. If we use
lambda structures instead of ordinary functions in handling spatial expressions,
we can keep the speaker’s viewpoint undetermined.

add
add

2

x. add(x, add(x, 2))λ

x

Fig. 4. A lambda structure

In addition, a lambda structure is internally encoded with a description of
how to use its input value. In this case, input variable x is used twice in the
structure. So, a lambda structure can be regarded figuratively as a pipeline
which connects between the input values with other functions (see Fig. 4). That
means that a lambda structure preserves relations between functions used in the
structure. This feature seems to be useful in handling nested expressions. But
to exploit this advantage, we need to introduce another important concept of
lambda structures: “higher order function”. Since a lambda structure is taken
merely as an object, a function can return a function as its value. Such a function
is called a higher order function [2]. Consider the following example:

λx.λy.add(x, y) (2)

When one value is applied to the structure, say 5, we produce

λy.add(5, y) (3)

which is also a lambda structure. And remember that, because a lambda struc-
ture is an object, it is allowed to take other lambda structures as arguments.
With these two features we can make functions that “take a function as an
argument and return a function”. For example,

convertplusone ≡ λx.λy.add(x(y), 1) (4)

works as a “function converter”, which converts a function into another function
that adds 1 to its output. So we have:

convertplusone(convertplusone(λz.z))(2) ⇒
λy.add(add((λz.z)(y), 1), 1)(2) ⇒

add(add(2, 1), 1) ⇒ 4 (5)

Based on this characteristic, we can make lambda structures which can be
applied infinitely and always take one argument. That makes the lambda struc-
ture based representation of nested expressions quite tractable. Furthermore,
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the computation of lambda structure is not executed until the input value is
actually supplied. This is called “lazy evaluation” which enables us to handle
dynamically moving positions. Therefore, using lambda structures has several
attractive benefits in the implementation of an efficient semantic representation.
On the basis of the above characteristics, we can design our system to translate
spatial expressions into lambda structures with the following principles.

At first we prescribe that every spatial expressions should be translated into
a lambda structure. Every phrase containing a spatial expression should be han-
dled as a function, not as a value, because this rule enables the system to keep
the speaker’s viewpoint undetermined and to keep track of dynamically changing
positions. When a spatial expression is translated, the system stores it and uses it
for animation generation, in which the speaker’s viewpoint changes every frame.
Let us call this type of lambda structure a “spatial lambda structure” (denoted
below by Si, etc.). All spatial lambda structures must have one input comprising
the speaker’s viewpoint coordinates and return one output comprising the coor-
dinates computed by the structure. This regulates the interface between lambda
structures, such that all spatial lambda structures can be handled in the same
manner. In this way, we can represent spatial expressions.

We use lambda structures for another purpose, that is to convert spatial
lambda structures into other spatial lambda structures. Let us call this type of
lambda structure a “converter lambda structure” (denoted below by Ci etc.).
This kind of structure converts a spatial lambda structure denoting a certain
type of position in the virtual space, into another type of position. So, we can
restrict or modify spatial lambda structures using converter lambda structures.
Converter lambda structures are higher order functions, regarded as function
templates. A converter lambda structure takes one or more arguments. The
first argument must be the spatial lambda structure to be converted. The other
arguments passed to the converter let the structure know how to restrict or
modify the spatial lambda structure. Therefore, a converter lambda structure
acts like an English preposition representing a relative relation between positions.
This enables us to “encapsulate” a lambda structure within another lambda
structure, as for nested expressions.

When constructing structures, we at first use spatial lambda structures which
initially exist in the system. Such spatial lambda structures points to a certain
constant position or a certain moving position in the virtual space and are con-
sidered as primitives for composing semantic representations. Next we apply
converter lambda structures as many as we want to restrict or modify the ini-
tial position. Suppose that we have a primitive spatial lambda structure S0 and
some converter lambda structures C1, C2, C3, ...,Cn, then the following rule is
satisfied:

C1C2C3...CnS0 ⇒ SFinal (6)

In this way, we can derive a nested semantic representation for a nested
spatial expression.

In the remainder of this section, we illustrate how the problems mentioned
in the previous section are solved through the use of these principles.
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First, we can represent a constant position A as a spatial lambda structure
SA, at which a fixed object is located in the virtual space, with:

SA ≡ λps.PA (7)

Here PA denotes the actual coordinates of the object A, which is fixed in the
virtual space. Applying the viewpoint of the speaker to ps1, the structure can
be reduced by beta-translation to:

(λps.PA)ps1 ⇒ PA (8)

This means that when ps1 is fed into the lambda structure it discards this
value and returns the value PA. Although this simply acts as a constant, we
encapsulate even constants with lambda abstraction in order to maintain the
above regulation of the interface. We can use the converter lambda structure
CRightOf to represent the meaning of “right of s1”:

CRightOf ≡ λs1.λps.fRightOf (ps, (s1)ps) (9)

Note that s1 is also a spatial lambda structure which satisfies the above
principles. Here fRightOf (ps, pt) denotes an ordinary function, which takes the
coordinates of the speaker as ps and the coordinates of the target as pt, and
returns a location located to the right of position pt, as seen from the position
ps. From this structure, we obtain another spatial lambda structure SRightOfA

which represents “the right of A” as (see Fig. 5):

SRightOfA ≡ (CRightOf )(SA) ⇒ λps.fRightOf (ps, (λps′ .PA)ps) (10)

fRightOf

s1

pt

ps

PA

ps

SA

CRightOf

fRightOf

pt

ps

SRightOf

PA

Fig. 5. Composing a lambda structure

Note that alpha-translation is used here to avoid conflict of variable names.
The structure can be reduced when the speaker’s viewpoint is applied, as in:

(SRightOfA)ps1 ⇒ fRightOf (ps1, PA) (11)

Now we can obtain the exact coordinates by applying the coordinates of the
camera agent (= the speaker’s viewpoint) to the structure. Thus, the converter
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lambda structure forms a function template of a function which determines where
the right of s1 is.

Moreover we can synthesize structures recursively. For example, we can simi-
larly define another converter lambda structure CNear representing the meaning
of the word “near” as:

CNear ≡ λs1.λps.fNear(ps, (s1)ps) (12)

And synthesizing CNear with CRightOf , we can construct another converter
structure CNearTheRightOf which represents the meaning of “near the right of”
as :

CNearTheRightOf ≡ (CNear)(CRightOf ) (13)

Following the above principles, many phrases containing spatial expressions
can be represented as spatial lambda structures. The system can use the struc-
ture in computing the goal coordinates for each animation frame. Once a spatial
lambda structure is constructed, it is stored in the system and supplied with
the speaker’s viewpoint (the position of the camera in this case) every frame. In
addition, applying the viewpoint is not computationally expensive. Actually the
user can alter not only the position but also the direction of the camera. Though
we omitted details of direction to simplify the explanation, the same formalism
can be used to compute direction. The system carries out moving and panning as
primitive operations, and we can command the system to execute them simulta-
neously. Thus, using lambda structures, we can make a semantic representation
which solves the problems mentioned in the previous section efficiently.

6 Translation of Natural Language Instructions

In our approach, there is an isomorphism between syntax and formal seman-
tics. We designed the semantic representation to be constructed recursively in
correspondence to the syntactic tree. In linguistics, such isomorphisms are com-
monly employed in Montague grammar [8, 3], and are used in a similar fashion to
our proposed formulation. Applying this idea to our approach, we can translate
spatial expressions into our semantic representation. Although we mention here
only the case of Japanese, the proposed method can be also applied readily to
English. For example, consider the sentence in Example 2, meaning “near the
right of the desk” :

Example 2. “Tsukue (noun-desk) no (postposition-of) / migi (noun-right) no
(postposition-of) / chikaku (noun-neighbourhood)”

This expression would occur as part of an overall instruction. The expres-
sion is syntactically analyzed as shown in Fig. 6. The semantic analysis module
traverses the tree to construct the semantic representation. For each node, the
module recursively composes a representation of subtrees of that node, includ-
ing spatial expressions. The final structure constitutes a lambda structure which
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Tsukue no migi no chikaku

NP

n

NP : Noun Phrase

p : postposition

n : noun

n

n

p

pNP

NP

(desk) (of) (right) (of) (neighbour-
hood)

Fig. 6. The syntactic tree for “Tsukue no / migi no / chikaku”

takes the speaker’s viewpoint as an argument and returns the coordinates in-
dicated by that expression. Here we can define the function which translates a
subtree containing spatial expression into a semantic representation. Let NP:(NP
p n) be a tree node NP consisting of three subtrees: NP, p and n in this order.
Function fsem is defined as:

fsem(NP:(NP p n)) ≡ (fsem(n))(fsem(NP)) (14)
fsem(NP:n) ≡ fsem(n) (15)

fsem(n:tsukue) ≡ λps.PDesk (16)
fsem(n:migi) ≡ λs1.λps.fRightOf (ps, (s1)ps) (17)

fsem(n:chikaku) ≡ λs1.λps.fNear(ps, (s1)ps) (18)

Applying function fsem to the root node of the tree in Fig. 6, we obtain a
spatial lambda structure representing “near the right of desk” as:

fsem(NP:(NP:(NP:(n:tsukue) pp:no n:migi) pp:no n:chikaku)) =
(fsem(n:chikaku))(fsem(NP:(NP:(n:tsukue) pp:no n:migi))) =

(fsem(n:chikaku))((fsem(n:migi))(fsem(NP:(n:tsukue)))) =
(fsem(n:chikaku))((fsem(n:migi))(fsem(n:tsukue))) =

(λs1.λps.fNear(ps, (s1)ps))((λs1.λps.fRightOf (ps, (s1)ps))(λps.PDesk)) ⇒
λps.fNear(ps, (λps′ .fRightOf (ps′ , (λps′′ .PDesk)ps′))ps) (19)

To implement the proposed method, a programming language is required
which has facility to handle lambda structures. Some functional languages such
as Scheme and ML support the storage and application of lambda structures
as a primitive operation. We chose Scheme to implement the system. The se-
mantic analysis module written in Scheme uses such functions as fsem to build
the semantic representation. In the animation generation module, the lambda
structures are supplied with the coordinates of the camera agent for each picture
frame.
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7 Conclusion

In this paper, we proposed the representation of spatial expressions in terms
of lambda structures. Thanks to particular characteristics of lambda structures,
semantic representations of spatial expressions can be easily constructed and
efficiently computed. With this formalism, we can effectively handle spatial re-
lations in natural language instructions.

In future work, we hope to achieve the following goals:

– Apply this formulation to control other objects.
– Use contextual information to allow users to provide more succinct com-

mands.
– Disambiguation of modification. Currently our method is based on the as-

sumption that a spatial expression modifies only one target. However there
may be cases where the system need to determine which target is modified
by spatial expressions from syntactic or semantic standpoints.

– Detailed tuning. Make the camera agent aware of the size of the subjects,
Realize simultaneous movement of multiple agents by more complicated com-
mands, and so on.
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